A hybrid dynamic-statistical approach to link predictive understanding to improve seasonal prediction of rainfall anomalies at the regional scale

Rong Fu1, Nelun Fernando2, Sudip Chakraborty1, Bing Pu3, Amir Erfanian1

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles

2Texas Water Development Board

3NOAA GFDL

The 43rd Annual NOAA CDPW
Santa Barbara, October 23rd, 2018
Challenges for seasonal rainfall prediction

2011 Texas Drought rainfall anomalies
- GPCC
- CFSv2

2012 Great Plains’ Drought rainfall anomalies
- GPCC
- CFSv2

California drought, Dec 2014-Feb. 2015 rainfall anomalies

ABSTRACT
This review compares last year’s NOAA Climate Prediction Center (CPC) 30-day and 90-day precipitation and temperature forecasts for the winter period of December-February (DJF) 2014-2015 with the actual observed conditions.

ANALYSIS
Winter Precipitation: The CPC winter precipitation forecast for DJF 2014-15 did poorly at capturing the negative precipitation anomalies for California and Oregon. It did capture the negative anomalies in Washington and the Midwest. The above normal precipitation forecast along the southern tier of states only verified in a few places and was out of phase along much of the Gulf Coast and southern Florida.

Winter Temperature: For the second year in a row the winter temperature outlook for most of New England was a complete fail. Above normal temperatures were forecast for most of West and verified well west of the Rockies but not in the Rockies and the western Plains. The below normal forecast for most of the Southeast verified, but the remainder of the eastern half of the country was not well captured.

Monthly Precipitation and Temperature Analyses: Forecast and observed conditions are graphically also depicted below.
Observations: Drought persistence suggests potentially drought predictability for seasonal forecast

Namias 1982; 1991:

- Persistence of the drought circulation anomalies from March to June provides reasonable good predictability for 1980 and 1988 summer droughts.

Fernando et al. 2016 (Clim Dyn):

- 13 out of 18 severe-to-extreme summer droughts over the SC US since 1895 are linked to dry spring, only 3 summer droughts occurred after wet springs.

Erfanian and Fu 2018 (to be submitted, See Poster #29):

- Summer rainfall deficits over the US Great Plains are significantly correlated with the spring rainfall deficits over the US SW and reduced zonal moisture transport.
What processes could be responsible for the observed drought persistence at seasonal scale?

- **Land surface feedbacks**: Carson and Sangster 1981; Oglesby and Erickson 1989; Dirmeyer 1994; Myoung and Nielsen-Gammon 2010

- **Internal atmospheric variability**:
 - “a sequence of unfortunate events” Hoerling et al. 2014
 - Stationary Rossby waves e.g., Wang et al. 2014

- **Soil moisture anomalies can influence large-scale circulation remotely**: Van den Dool et al. 2003; Koster et al. 2014

- **Is there real source of predictability?**

- **How can these processes provide predictability at seasonal scale?**
Evolution of the summer droughts over the US Great Plains

- Summer droughts start from rainfall deficits caused by anomalous sub-seasonal large-scale anticyclonic circulation in spring or winter.
- Sub-seasonal variability variability shown in the middle and upper troposphere, but lower-level subsidence persists, leading to persist rainfall deficit and land surface dryness from spring to summer.

SGP: 92W-110W, 25N-40N

NGP: 92W-110W, 38N-50N

Sun et al. 2015, JGR-bio
What are the underlying processes for the persist rainfall deficits from spring to summer?

• Strong decrease of zonal moisture advection in the lower troposphere above the boundary layer from February to June.

• The decrease of zonal moisture transport is mainly due to the spring-time dry conditions over the upwind regions (the Rockies and western United States).

See Poster #29

Erfanian and Fu 2018, to be submitted

Rong Fu and Amir Erfanian
rfu@atmos.ucla.edu
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
Regional land-atmospheric feedbacks re-enforce the subsidence from spring to summer

- **Reduce moisture in the ABL and lower troposphere in spring**
- **Suppress development of shallow convection, convective congestus and deep convection in late spring and summer**
- **Reduce radiative and latent heating in the atmosphere**
- **Enhance subsidence and re-enforce drought**

![ARM SGP soundings](image1)

![NCEP and MERRA reanalysis products](image2)
Why do climate models fail to capture persistent drought memory?

- The 500 hPa geopotential high anomalies over the US Great Plains is too weak in spring
- The anomalous high decays faster than that observed.
What cause loss of drought memory over US Great Plains?

Modeled summer drought

- Starts from a top-down, instead of bottom-up, induced subsidence in spring.
- Opposite sign of shallow clouds response compared to that observed in spring.
- Weaker and less persistent negative latent heating (rainfall) anomalies or dry memory.
Can these processes improve summer rainfall predictability?

A hybrid physical-empirical model approach:

Winter \rightarrow Spring: dynamic climate model prediction

Spring \rightarrow Summer: statistical model prediction (IRI CPT)

- La Nina
- AMO+
- PDO-

Statistical Model: Combined multivariate EOF and Canonical Correlation Analysis (CCA) model

Anomalous high pressure

Subsidence, cap inversion

Land surface feedbacks

Summer drought

Prediction provided to Texas stakeholders since 2015 at http://waterdatafortexas.org/drought/drought-forecast.

Hybrid NMME-statistical prediction skills

Skill maps for 6-, 5-, 4-, and 3-month lead MJJ rainfall forecasts

NMME Skill for MJJ rainfall anomalies

Prediction of MJJ rainfall anomalies initialized by CFSv2 real time forecast in April

Fernando et al 2018, in review

Figure 4. Top row (a,b, and c): NMME skill maps for MJJ rainfall anomalies using April as initial conditions. Please see text for different members of NMME. Bottom row (d, e, and f): Skill maps using April initial conditions and MJJ rainfall as in Figure 3 and 4 are added to compare with skills observed using NMME.

Figure 5. Skill comparison maps for MJJ rainfall anomalies using (a) January-April (6 months lead), (b) February-April (5 months lead), (c) March and April (4 months lead), and (d) April (4 months lead) initial conditions.
Figure 7. CPT based predicted deterministic forecast maps of rainfall using (a-d) January-April (4-6 months lead), (e-h), February-April (4-5 months lead), (i-l) March and April (4 months lead), and (m-p) April (4 months lead) initial conditions for 2011-2014. (q-t) observed precipitation anomaly during 2011-2014 using CPC data sets. All anomalies are estimated based on 1982-2010 mean of hindcasts and observation.
Prototype statistical prediction of winter rainfall anomalies for California/Nevada

- **Statistical seasonal prediction of winter rainfall anomalies (December-February) show high skills than the seasonal prediction of dynamic climate models over CA/NV.**

Statistical seasonal prediction initialized in October

NMME seasonal prediction initialized in October
Hindcasts for winter rainfall anomalies during the 2012-2016 drought over California/Nevada

Hindcasts of Dec-Feb standardized rainfall anomalies using October inputs (Training period: 1979-2010)

- **Observation (CPC)**
- **Statistical prediction**
- **NMME prediction**
Conclusion

What processes could be responsible for the spring to summer drought persistence over the US Great Plains?

- Reduced westerly moisture transport in the lower troposphere, due to dryness over US west, and the positive feedbacks between surface dryness, shallow clouds, deep convection, and large-scale subsidence reinforce the large-scale anomalous drought circulation.

Could dry memory provide improved rainfall predictability on seasonal scale?

- Appear to be over the US Great Plains, and possibly over the California/Nevada, as suggested by a hybrid dynamic-statistical seasonal prediction.

- A hybrid dynamic-statistical seasonal prediction could provide a value added product to support NOAA’s mission of improving seasonal prediction of regional rainfall over the US to support societal drought preparedness.
Thank You!