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Key Research Question Key Applications Question

What is the limit of global

synoptic (1-day to 14-day) Can present-day
and subseasonal (1-week to subseasonal-to-seasonal
1-month) prediction skill of (S2S) forecast systems
atmospheric river occurrence, provide benefit to CA water
and how does each vary as a resource management
function of season, region, decision makers?

and certain large-scale
climate conditions?



A global, objective algorithm for AR identification

(Guan and Waliser 2015)
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Based on Integrated Vapor Transport
(IVT) fields and a number of common AR
criteria (e.g. Ralph et al. 2004)

Applied to global hindcast/forecast
systems and reanalysis datasets

Code and databases available at:
https://ucla.box.com/ARcataloqg

Databases include AR Date, IVT, ,,
Shape, Axis, Landfall Location, etc.

Used for GCM evaluation (Guan and
Waliser 2017), climate change
projections (Espinoza et al. 2018), &
forecast skill assessment (DeFlorio et al.
2018a and 2018b)
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https://ucla.box.com/ARcatalog
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@’ Global Evaluation of Atmospheric River Subseasonal Prediction Skill

Michael J. DeFlorio', Duane E. Waliser', Bin Guan'2, F. Martin Ralph3, and Frederic Vitart*; (Climate Dynamics 2018) @
'NASA Jet Propulsion Lab., 2UCLA, 3UCSD/SIO/CW3E, ECMWF#

Purpose of Study
+ Evaluate global ECMWF hindcast prediction skill of 1-week AR occurrence (AR1wk; number of AR days per week) at 1-week to 1-month lead times
* Quantify interannual variability of AR1wk magnitude, and identify conditions of climate variability which exhibit higher/lower AR1wk prediction skill

Global climatology of wintertime AR1wk, 1996-2015 Does ECMWF AR1wk skill exceed climatological skill?
Is AR1wk skill modulated by large-scale climate mode activity?

Observations; ERA-I
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« (left) ECMWF AR1wk occurrence forecast skill outperforms a
reference forecast based on monthly climatology of AR1wk
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* AR1wk is largest in midlatitude storm track regions



Experimental S2S AR forecasting for winter
2017-18 and 2018-19

Ucla \6, CECMWF

Duane Waliser Bin Guan Marty Ralph Frédéric Vitart Jay Cordeira
Mike DeFlorio Aneesh Subramanian
Alex Goodman and others

Jeanine Jones
Mike Anderson




Review of winter 2017-2018 activities and
winter 2018-2019 goals

Winter 2017-2018: what we did Winter 2018-2019: what we’re doing
« Create an automated pipeline to: * Produce near real-time week-3 AR1wk occurrence
» detect atmospheric rivers from ECMWF, ECCC, forecasts for ECMWEF, ECCC, and NCEP forecast
and NCEP forecast systems systems, stratified by mean AR intensity (>250 kg/ms,
» Twice-a-week for ECMWF >500 kg/ms)

« Weekly or bi-monthly for ECCC, NCEP
» calculate forecast skill of “number of AR days per

Display week-3 outlooks on protected CW3E website
Engage in NCEP CPC week-3/week-4 Friday

week” for week-1, week-2, and week-3 lead discussions (POC: Jon Gottschalck, NCEP/NOAA)
windows and compare to hindcast skill benchmarks + Working to add NASA GMAO experimental forecasts
[DeFlorio et al. 2018b; DeFlorio et al. 2018c (in to this effort (POC: Deepthi Achuthavarier, NASA
prep)] Goddard)

» Disseminate experimental forecasts and solicit feedback
during S2S telecons and JPL-DWR meetings

» Develop verification statistics using MERRAZ2 reanalysis
data for winter 2017-2018 outlooks (nearly completed)
and for winter 2018-2019 outlooks (next spring/summer)
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Experimental ECMWF Atmospheric River Forecast*
Issued on Thursday, October 18, 2018

Contents:

Slides 1 and 2: “Weather” - Typical presentation of US west coast weather/precipitation forecast over
lead times of 1 to 14 days considering only the likelihood of an atmospheric river (AR) occurring on a
given forecast day. Novelty — a weather forecast presented only in terms of AR likelihood.

Slide 3: “Subseasonal” - US west coast weather/precipitation forecast for week 3 considering the
likelihood of an atmospheric river occurring in the given forecast week.
Novelty — as above, but also specifically for week 3, an extended/long-range or “subseasonal” prediction

*This is an experimental activity for the 2017-18 and 2018-19 winters. Methodologies and hindcast skill are documented
in DeFlorio et al. (2018a,b). Further validation of the real-time forecast results is required and underway. This phase of
the research includes gathering stakeholder input on the presentation of information — feedback is welcome.

POC: Michael J. DeFlorio (michael.deflorio@jpl.nasa.gov)

Center for Western Weather

@ and Water Extremes

Jet Propulsion Laboratory
California Institute of Technology



*EXPERIMENTAL AR FORECAST***

October 18, 2018 forecast: probability of AR occurrence during week-1
2018-10-19
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Experimental AR forecast issued on Thursday,
October 18, 2018 by M. DeFlorio, D. Waliser, A.
Goodman, B. Guan, A. Subramanian, Z. Zhang,

and M. Ralph using 51-member real-time ECMWF
data for an Experimental AR Forecasting Research
Activity sponsored by California DWR

Jet Propulsion Laboratory | () Center for Western Weather
‘ California Institute of Technology V

Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



*EXPERIMENTAL AR FORECAST***

October 18, 2018 forecast: probability of AR occurrence during week-2
2018-10-26
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Experimental AR forecast issued on Thursday,
October 18, 2018 by M. DeFlorio, D. Waliser, A.
Goodman, B. Guan, A. Subramanian, Z. Zhang,

and M. Ralph using 51-member real-time ECMWF
data for an Experimental AR Forecasting Research
Activity sponsored by California DWR

Center for Western Weather

@ and Water Extremes

Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



*EXPERIMENTAL AR FORECAST***

October 18, 2018 forecast: number of AR days during week-3
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Experimental AR forecast issued on Thursday,
October 18, 2018 by M. DeFlorio, D. Waliser, A.
Goodman, B. Guan, A. Subramanian, Z. Zhang,

and M. Ralph using 51-member real-time ECMWF
data for an Experimental AR Forecasting Research
Activity sponsored by California DWR

, Center for Western Weather

@ and Water Extremes

Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



Multi-model Experimental S2S Atmospheric River Forecast*
Issued on Thursday, October 18, 2018

Contents:

Definition of “Subseasonal” - US west coast weather/precipitation forecast for week 3 considering the
number of atmospheric river days predicted to occur in the given forecast week.

Novelty — an S2S§ forecast presented only in terms of AR likelihood - specifically for week 3, an
extended/long-range or “subseasonal” prediction

Slide 1: ECMWF (European Centre for Medium-Range Weather Forecasts) forecast system (]
Slide 2: NCEP (National Centers for Environmental Systems) forecast system =
Slide 3: ECCC (Environment and Climate Change Canada) forecast system Il

*This is an experimental activity for the 2017-18 and 2018-19 winters. Methodologies and hindcast skill are documented
in DeFlorio et al. (2018a,b). Further validation of the real-time forecast results is required and underway. This phase of
the research includes gathering stakeholder input on the presentation of information — feedback is welcome.

POC: Michael J. DeFlorio (michael.deflorio@jpl.nasa.gov)

Center for Western Weather

@ and Water Extremes

Jet Propulsion Laboratory
California Institute of Technology



*EXPERIMENTAL AR FORECAST***

October 18, 2018 forecast: number of AR days during week-3
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Experimental AR forecast issued on Thursday,
October 18, 2018 by M. DeFlorio, D. Waliser, A.
Goodman, B. Guan, A. Subramanian, Z. Zhang,

and M. Ralph using 51-member real-time ECMWF
data for an Experimental AR Forecasting Research
Activity sponsored by California DWR

, Center for Western Weather

@ and Water Extremes

Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



***EXPERIMENTAL S2S AR FORECAST*** NCEP

October 18, 2018 forecast: number of AR days during week-3
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**EXPERIMENTAL S2S AR FORECAST***

October 18, 2018 forecast: number of AR days during week-3

Nov 02 to Nov 08, Climatology 15-day to 21-day lead
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Experimental AR forecast issued on Thursday,
October 18, 2018 by M. DeFlorio, D. Waliser, A.
Goodman, B. Guan, A. Subramanian, Z. Zhang,

and F. M. Ralph using 21-member real-time ECCC
data for an Experimental AR Forecasting Research
Activity sponsored by California DWR
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Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



Ongoing verification efforts for winter
2017-2018 atmospheric river
occurrence experimental forecasts

&




Strategy: verify week-3 AR occurrence
experimental forecasts categorically

* forecast metric: “number of AR days per week” (AR1wk)

* define categories of AR occurrence (subject to change):
« 0 days” - no AR activity
« 1 day” - low AR activity
« “2 days” - moderate AR activity
« ”3-7 days” - high AR activity

» calculate average Brier Skill Score (BSS) over forecast period for each

category




Brier Skill Score (BSS) overview

 Brier Skill Score (BSS) verifies accuracy of probabilistic forecasts of a binary event that can be
grouped into categories

* in our case, whether there were a given number (0, 1, 2, 3-7) of AR days in a given week
« BSS =1 - (BS/BS,y)

. 1
where BS = Brier score for forecast = ;Z?Ll(Pi—Oi)z

. . 1
BS,.; = Brier score for reference climatology = " SN 1 (P; ctim—0:)?

N = number of forecasts
P = forecast probability
O = observations (AR =1, no AR =0)
P.im = reference climatology (“long term”
observations)
« Compute BSS for each AR day category

Interpretation

* BSS < 0 - forecast skill is lower than a forecast made using climatology

« BSS =0 - forecast skill is equal to a forecast made using climatology (i.e. no skill)
« BSS =1 - forecast skill is perfect compared to a forecast made using climatology

S



Week-3 Brier Skill Scores: Winter 2017-2018 ECMWF Forecasts, Russian River
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Comparison to categorical hindcast skill
benchmarks for the 1 AR day/week category
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Slightly positive skill in some places, but mostly zero skill almost everywhere by week-3
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Summary: subseasonal-to-seasonal (S2S) forecasting of
atmospheric rivers

« Atmospheric rivers occur globally and influence weather and water
extremes.

 Total amount of annual precipitation over the western U.S. is strongly
iInfluenced by occurrence or absence of atmospheric rivers.

« Subseasonal-to-seasonal (S2S) forecasting lead times for atmospheric
rivers represent a critical decision-making time window for water resource
managers.

* Real-time experimental AR occurrence forecasting effort (and verification)
using ECMWF, NCEP, and ECCC data is ongoing (collaboration between
JPL, UCSD-Scripps CW3E, and DWR).




