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Motivation and Goal

» The generation of multi-model ensemble (MME) is a well-accepted approach to
improve the skill of forecasts from individual GCMs.

» There are two common approaches to make a MME, viz., combining the individual
ensemble forecasts with equal weights, or weighted according to their prior
performance.

» Irrespective of which combination method has been used, plethora of studies have
shown that multi-model ensembles do increase prediction skill over single-model
forecasting.

» Weighted MME: Mostly linear combination of GCM using multiple linear regression
(MLR). (PCR, BMA).

» Does Machine Learning Based Multi-Model Ensemble Methods Add Value over
Existing Methods?

((IRI}

International Research Institute

for Climate and Society
EARTH INSTITUTE | COLUMBIA UNIVERS



SUPERVISED
LEARNING

Develop predictive

\/ CLASSIFICATION
\ A (@ ©
PP ®_ o0

model based on hoth
input and output data

J REGRESSION

MACHINE LEARNING

LEARNING

Group and interpret

on input data

UNSUPERVISED |

dota based only

What is Machine Learning?

Artificial intelligence

Artificial neural
networks

Deep
learning

GLASSIFICATION vs
REGRESSION

s ™

Classification Regression

A

(&)

® o0
® 0o

Yy ®
CLUSTERING

L —

5\ -

Artificial intelligence (Al)
Any techniques that enable machines to solve a task in a
way like humans do

Machine learning (ML)
Algorithms that allow computers to learn from examples
without being explicitly programmed

Artificial neural networks (ANN)
Brain-inspired machine learning models

Deep learning (DL)

A subset of ML which uses deep artificial neural networks
as models and automatically builds a hierarchy of data
representations

The simplest form of ML is a linear regression model!
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Artificial Neural Network

An Artlf!uaI_Neu_raI Network (ANN) is a computational The Neuron Diagram
model inspired in the networking of natural neurons Kbl Mation
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Neural Networks, A Simple Explanation.mp4

len-layer reed rorwarad neural networks
(SLFN)

Input Hidden Output

'dforward network (SLFN), as one of the laver laver laver

yrward neural networks, have been

e | D P vesos rom both theoretical and application @
arning capabilities and fault-tolerant "PU 7 7
abilities. Most of the SLFN use gradient-based learning Fingiie 38 7 @
algorithms such as the back propagation neural network e @ ., Output
(BPNN). Input #3 _ 2
Input #4 @
Limitations: @

s Efficiency of ANN based methods is highly dependent on
appropriate tuning of their adjustable parameters, e.g., the
number of hidden layers, nodes, weights and transfer function.
There are also several disadvantages of traditional SLFN which
includes long computation time, stopping criteria, learning rate,
learning epochs, local minima, and the over-tuning problems.
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Extreme Learning Machine: A “Generalized” SLFN

“+To overcome such shortcomings, recently, a novel learning algorithm for
single-hidden-layer feed forward neural networks (SLFN) called extreme
learning machine (ELM) has been proposed by Huang et al., (2008).

“Extreme means to move beyond
conventional artificial learning
techniques and to move toward brain
alike learning”.-Huang,

“*In the proposed algorithm, the input weights and hidden biases are Nanyang Technological University,

randomly chosen. Randomly chosen input weights can efficiently learn
distinct training examples with minimum error.

s After randomly choosing the input weights and the hidden layer biases,
SLFNs can be simply considered as a linear system. The output weights
which link the hidden layer to the output layer of this linear system can N
now be analytically determined through Moore- Penrose (MP) generalized : ]
inverse of the hidden layer output matrices. i )
“*The basic principle which distinguishes ELM from the traditional SLFN
is that all the parameters (input weights and hidden layer biases) are not
required to be tuned.

**This simplified approach makes ELM thousands of times faster than that
of traditional SLFN. ELM also avoids many difficulties faced by gradient- Salient Features

based learning methods such as stopping criteria, learning rate, learning - “Simple Math is Enough.” ELM is a simple tuning-free three-step
epochs, local minima, and the over- tuning problems. Rt ‘

N . . . - - ;‘—.:
- The learning speed of ELM is extremely fast. 1G5 R
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Case study: North-East (winter) Indian Monsoon

CHINA

INDIA \

POST MONSOON SEASON
(October- December)

The NE monsoon season (October, November, and December)
contributes to about 50% of annual rainfall in the east coast of Indian

Peninsula.
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Implementation procedure of ELM for making MME

Selection of the input (Xs) The outputs from 7 GCMs are used as input neurons and observed
and output (Y) neurons rainfall is treated as targeted output.

l

The input neurons are scaled in the range of [-1, 1].

X — Xnin
Y = Yuin + (Ymax — Ymi X( )
( ) Xmax_Xmin

Scaling the neurons
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Training and testing of the
model

A leave-one-out cross- validation method has been used.
Data period:1982-2008

Final structure of the ELM with 7-neurons as input, 25 nodes in the hidden layer and 1 output neuron (7-25-1)
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Performance of ELM-MME compare to standard MME
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Concluding Remark

» ELM is simplified and “generalized SLFN” which make it thousands of times faster than that of
traditional SLFN.

> In ELM, parameters (input weights and hidden layer biases) need not be tuned.

» There is a significant improvement by ELM compare to existing MME methods in terms of skill
scores.

> Especially, ELM capture the inter-annual variability of observed rainfall over other MME
schemes.

» ELM also capture the “extreme” year and discriminate between wet and dry year.

» Scope: Need more data to set up a more robust network for ELM.

Thank youl!

Reference: Acharya N, Srivastava N.A., Panigrahi B.K. and Mohanty U.C. (2013): Artificial Neural Network
based Multi-model ensemble to improve prediction of northeast monsoon rainfall over South Peninsular

India: an application of Extreme Learning Machine. Climate Dynamics DOI: 10.1007/s00382-013-1942-2. r
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