Predicting Summer Wildfire Activity in Alaska Using Seasonal Forecasts at a 3-month Lead

C Borries-Strigle, US Bhatt, PA Bleniek, R Ziel, H Strader, E Stevens, AS York, R Thoman

Motivation
• Peak of Alaskan fire season (1 Apr. – 30 Sep.) usually in June-late July
• Summer 2019 had two anomalous and costly late season fires in August
• With an increase in temperatures, fire season is expected to be longer with enhanced fire activity and rising fire suppression costs
• Canadian Fire Indices (Buildup Index) used by fire management community to evaluate fire likelihood and related to largest acres burnt (Partain et al. 2015, Ziel et al. 2020)

Application: 2020 Outlook Example
• All models predicted below average BUI for most of fire season, but still in middle tercile
• Based on observations:
 - 2020 was a very low fire season
 - Peak occurred end of May
 - Observed BUI were in lower tercile for all subspecies except wind-driven

Data and Methods
Studying three seasonal forecast models: NOAA CFSv2, ECMWF SEAS5, and MétéoFrance Sys. 6/7

• Use March forecasts from seasonal forecast models to prepare fire season outlook
• Calculate daily forecast Buildup Index (BUI) as given by Canadian Forest Fire Weather Index System at Predictive Service Area (PSA) level for each model
 - Duff Moisture Code (DMC) and Drought Code (DC)
 - Temperature, precipitation, and relative humidity
 - Moisture of how much fuel is available to burn
• Compare to daily observations from station data aggregated over PSAs in Alaska for fire season from 1994 to 2019
• Use reconstructed data sets in daily BUI calculations
• Separate model BUI and observed BUI into terciles: upper, middle, lower
• Ex: Models did not capture the second peak in 2019 season for Kenai Peninsula (Fig. 5)

Forecast Skill
• ROC curves and corresponding ROC skill scores for the upper tercile BUI values for PSA AK14 (Kenai Peninsula) for the entire fire season (1 April – 30 September) for each seasonal forecast model.

Summary & Next Steps
• Seasonal forecasts have potential to provide outlook for Alaska boreal wildfire season
• Combine models into MME and evaluate forecast skill
• Continue working with fire managers to determine best practices to communicate information and what information is useful

References
De Groote, W. 2004: Interpreting the Canadian forest fire weather index (FWI) system, technical reference paper.

Acknowledgements
This work was made possible through financial support from the State of Alaska and NSF EPSCoR Grant OIA-1757348.