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Dynamical ENSO Forecast: Achievement

Skill of MINO3. 4 Index FCST for DWF 1983—-2020
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Dynamical ENSO Forecast: Deficiencies

False Alarms in NMME with May ICs for 2002, 2013, 2018 DJF
1
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More about the false alarm error are in Tippett et al. 2020 GRL



How to Improve Dynamical Forecast?

1. Model improvement (modeling centers’ job)
2. Statistical correction (Can we do it?)



Why Neural Networks (NN)?

1. Well suited for big dataset

2. No prior assumption about
the data distribution

3. Collinearity problem avoided

4. Can handle nonlinearity



A Simple Multilayer Neural Network

hidden layer

Input layer
gt

Output layer

Y: output vector

X: input vector

1. Is a model representin

2. Each hidden neuron is an activation function, can be linear or nonlinear



A Simple Multilayer Neural Network (cont.)

Mathematical Expression:

j=I

where
;=9 (f’.f" + D bji ’*) === hyperbolic tangent, nonlinear
=l

1. NN can approximate any smooth and measurable mapping function, as long as
a suitable set of parameters (weights) a&b is selected;

2. Parameters a & b are determined by minimizing error E=(Y-O)? in training stage
In this case, Y: NN corrected Nino 3.4 index; O: observation

Input/output examples for correcting Dynamical Nino3.4 index

1. Based on forecasted Nino3.4 index itself
* Input: x1 (raw forecast of Nino3.4 anomaly)
e Output: y1 (corrected forecast of Nino3.4 anomaly)
2. Based on forecasted SST over the tropical Pacific
* Input: x1, x2, X3, ..., xn (raw forecast of SSTs in the tropical Pacific)
* Output: y1 (corrected forecast of Nino3.4 anomaly)



Data used

Ensemble mean DJF SST hindcast/forecast with 1-7 month lead
from NMME and CFSv2

. DJF Nino 3.4 Index from OI SST

. Period: 1982/83 — 2019/20, NT=38 DJFs

. Area: The Tropical Pacific (TP) (120E-290E, 20S-20N)



Procedure

1. Training stage: Take one DJF out as target season, use other 37 DJF data to
train NN to determine its parameters. In this stage, input is the DJF mean SST of
model forecast, output is a scalar best fitting Ol Nino 3.4 index over the period;

2. Correction stage: Input target DJF SST of model forecast, calculate corrected
Nino 3.4 index (output) with the parameters determined in the training stage.

3. Loop 1-2 over all 38 DJF seasons
( Above procedure is referred as cross-validation with one-year-out (CV-1))

4. Test two types of input, one is the Nino 3.4 index alone; the other is the whole
tropical Pacific (TP) SST on grid.

5. Repeat 1-4 for each lead time

Note: Target season data is independent of the training data



Results of NN Correction to NMME
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Result: Improved skill

Skill of NING3.4 Index FCST for DJF 18983-2020
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Use of NINO 3.4 Index alone leads to
Smallimprovement

Use of Whole TP SST input results in
Significant improvement

Local SST alone is not enough
for a optimal correction



Result from NINO3.4 input: False alarms remained

MIMNGE. 4 Index: DJF 18853-2020
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Using Nino3.4 index alone as input is not sufficient for removing forecast errors.



Result from TP SST input: False alarms silenced

MIMNOE 4 Index: OJF 1983-2020
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False alarms significantly silenced
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Information outside Nino3.4 region is required to significantly remove forecast errors.



Result: Is the CV-1 result reliable? Yes!

MNINGE 4 Index: DJF 1983-2020
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CV-1 result is very close to that trained with earlier 2/3 data
INDICATION: parameters a&b are not sensitive to little changes in training data



Result: why the correction works?
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Result: Train NN with NWTP SST only

NINGS. 4 Index: DJF 19852020
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NWTP area: 120E - 160E, 0 — 20N
Data on the equator need to be included

NWTP area is critical for Nino3.4 index error correction.



Results of NN Correction to CFSv2



Result: Compare to CFSv2: skill vs lead time
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Skill of CFSv2 is obviously lower
than that of NMME, but their NN
corrected are very close



Result: Compare to CFSv2: forecast from May

NMINGZEZ. 4 Index: DJF 1983-201%
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The NN method corrected NMME false
alarms for 2002, 2013, 2015, and 2018,
but with an overshot for 1987 & 1998

The NN method corrected CFSv2 false
alarms for 2002, 2013 and 2018, but
failed for 2015.

The failure for CFSv2 DJF 2015
correction may be related to initial
significant error in CFSR oceanic
initial conditions



Recent Cold Biases in Tropical North Atlantic
(updated on Feb 9, 2016)

Temperature Anamaly at z=35m in 9°N=21°N (°C, Clim. 1999-2010)
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A cold bias emerged in tropical North Atlantic around Nov 2013 and enhanced quickly with time.

The cold bias was removed by the update in Jan 2015.

Courtesy: Yan Xue (2016) *



Summary

Dynamical ENSO forecast with NMME is of great skill, but false alarms
existed in the forecast initialized in spring and early summer
for some years.

Artificial Neural Network is effective in correcting the false alarms,
leading to improved overall skill.

The skill improvement is due to the information taken from
the model SST in the Northwestern Topical Pacific.

Individual model may have lower skill than NMME, but their corrected
forecasts are very close.
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