Southern Africa’'s rainfall
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Figure 1:Reliability diagram and
associated frequency histogram
for above-normal (a) and below-
normal (b) JJA rainfall totals
over the Southwestern Cape. The
Brier skill score (BSS) and
relative operating characteristic
(ROC) score for two categories
are presented, as well as the
ranked probability skill score
(RPSS) over the three
categories.
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Two of the main centers
produce seasonal forecasts for the region are the
South African Weather Service (SAWS) and the
University of Pretoria (UP). SAWS runs their own fully
coupled ocean-atmosphere model and the seasonal
forecasts produced by their model are combined with
forecasts from NMME models to produce 3-month
multi-model seasonal forecasts for South Africa. At UP,
NMME models are used for rainfall
temperature forecasts for SADC, and tailored forecasts
for malaria occurrence over the Limpopo Province of
South Africa, inflow forecasts into Lake Kariba, dry-
land crop yield forecasts for selected farms in South
Africa, and rainfall forecasts for farms in South Africa
and Namibia based on their own archived rainfall data.

Rainfall Predictability Research

Predictability research on southern African seasonal rainfall variability is
mostly focussed on the austral summer rainfall regions. The GFDL-CM2p5-
FLORBO1 (referred to here as “GFDL’) was recently used to demonstrate
that there also exits seasonal rainfall predictability over the austral winter
rainfall region of the Southwestern Cape (Figure 1; Archer, E., Landman
W.A., Malherbe, J., Tadross, M. and Pretorius, S. (2019). South
Africa’s winter rainfall region drought: a region In transition? — o
Climate Risk Management. Volume 25, 2019, 100188. doi:
10.1016/j.crm.2019.100188).
predictability was compared with the
predictability of regions globally which are also affected by ENSO. The
work showed that southern Africa’s summer predictability ranks in more or
less the bottom third of the regions considered (Figure 2; Landman,
W.A., Barnston, A.G., Vogel, C. and Savy, J. (2019). Use of ENSO-
related seasonal precipitation predictability in developing regions
for potential societal benefit.
Climatology, 39, 5327-5337. doi: 10.1002/J0C.6157).
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Figure 2: Median and mean correlations
(Pearson and Spearman) for each of the 20
regions and for three NMME models.
Southern Africa's results are marked with
“13” and for the Limpopo River catchment
area values (median Pearson) an
used. The list shows the 20 regions ranked
in terms of highest to lowest median
Pearson values according

model.
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SST Predictions and Operations

UP makes use of NMME forecasts (GFDL) and a statistical SST model rainfall fields as predictors in statistical model. Is for the case of a farm in northern Namibia and for a farm in central South
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Figure 3: SST anomaly forecast for Nov-Dec-Jan 2020/21, produced
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Figure 4: Nifio3.4 SST forecasts produced in Figure 12: Cross-validated (left) and real-time forecasts (middle and right) for
October 2020. farms near Grootfontein, Namibia (top) and in central South Africa.
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to the GFDL

GFDL forecasts are improved by correcting the mean and variance biases using the CPT. Forests are probabilistic and made for
three categories with the outer two categories, respectively, defined by the 25t and 75™ percentile values of the climatological record.
Along with the forecasts, skill maps representing ROC scores are presented. Forecasts are produced for a 6 month period represented
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Operational Forecasts for Southern Africa
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Figure 5: Nov-Dec-Jan 2020/21 probabilistic rainfall forecasts and Figure 6: Nov-Dec-Jan 2020/21 probabilistic maximum temperature
associated skill (ROC) maps. GFDL forecast initialized in October forecasts and associated skill (ROC) maps. GFDL forecast initialized in

2020.
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The GFDL model was used to test the predictability of the incidence of seasonal malaria in the Limpopo province of South Africa
(Figures 7 & 8; Landman, W.A., Sweljd, N., Masedi, N. Minakawa, N. (2020). The development and prudent application of
climate-based forecasts of seasonal malaria in the Limpopo province in South Africa. Environmental Development, 35,
100522, doi: 10.1016/7j.envdev.2020.100522) as well as for operational malaria forecasting (Figure 9).
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Tallored Forecasts

Seasonal Malaria in Limpopo Province
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Figure 7: Correlations
validated hindcasts and observed malaria hindcasts (1-month lead) for the Dec-Jan- three most recent seasons and for the

incidence for the seasons indicated. Forecast Feb seasons using GFDL-based rainfall data coming season. GFDL rainfall fields are the
lead-times up to three months are presented. as predictor. Time series have been predictors in a statistical model.

normalized.
Inflow Forecasts for Lake Kariba End-of-season Crop Yield Forecasts for a Farm
The GFDL model output is used to continue with Crop yield data provided by the farmer are used as the predictand in a
work on inflow predictability of a few years ago statistical model that uses GFDL rainfall fields as predictor.
(Muchuru, S., Landman, W.A. and DeWitt, D. _ Bapsfontein End-of-Season Yield Hindcasts
(2016) PrediCtion Of inﬂOWS intO Lake Kariba 25 Pearson Correlation: O.bserved -
using a combination of physical and empirical ol 9852008 00530991 —e—] Diteronce | | Cypp-Yield Forecast for 2021, Made in October 2020
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20} [ Rainfall Forecasts for Farmers
i A number of farmers have made the rainfall records of their farms
corr=0.617 r available. GFDL rainfall fields are used in a statistical model to predict
B 0, |110 - - seasonal rainfall at the farm based on the farmer’s own data (Landman,

Years refer to Decembers

that uses antecedent SST fields as predictor in a CCA model. Probabilistic *—
(Figure 3) and deterministic forecasts (Figure 4) from the NMME and
statistical models are constructed with the use of the Climate Predictability

Tool (CPT) and then averaged. Nino3.4 forecasts are subsequently included Cazombe
In the IRI/CPC forecast plume, and predicted global SST anomalies are
provided to the Council for Scientific and Industrial Research (CSIR) In ‘
South Africa to serve as boundary forcing for their AGCM.
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Figure 10: Cross-validated (left) and real-time forecasts ) ] ] i ] )

W.A., Archer, E.R.M and Tadross, M.A (2020). Citizen science for
the prediction of climate extremes in South Africa and Namibia.




	Slide Number 1

