Time-Space Characterization of Precipitation in the Ganges-Brahmaputra-Meghna River Basin for Projecting Riverbank Erosion in the Bangladesh Outlet

> Muna Khatiwada Department of Geography, Planning, and Environment East Carolina University

Introduction

- Riverbank erosion is a perennial hazard in Bangladesh
- 80% of annual rainfall occurs in GBM river basin during monsoon
- Thousands of hectares of land eroded by GBM basin annually
- Loss of lives, homes, lands, and property

Ganges-Brahmaputra-Meghna (GBM) River Basin

- World's third largest river basin,
- Covers 1.7 million km²
- Transboundary river basin
- 32 hydrological sub-basins

Data

- Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR)
- Relevant, high-resolution, and long-term precipitation data for hydrological and climate studies
- Provides rainfall data every 3 hours from 1983 to present

Research Questions

To what extent does the variability of precipitation in time and space within the GBM relate to annual riverbank erosion in the Bangladesh outlet?

➤What is the relative importance of localized daily precipitation extremes versus basin-scale seasonal precipitation for riverbank erosion in the study area?

Are climate teleconnections, e.g. ENSO, helpful in understanding these patterns of precipitation to potentially provide seasonal predictions of riverbank erosion?

Methodology

- 1. Average PERSIANN-CDR Pre-monsoon and Monsoon Precipitation in ArcGIS
- 2. Extremes local daily Precipitation
- 3. Flow distance
- 4. ENSO

- 2. Relationship between pre-monsoon and monsoon precipitation
- 3. Calculate Flow length to the outlet for every PERSIANN-CDR grid cell
- 4. Relationship between ENSO and precipitation

Correlation between shoreline change data, seasonal precipitation and local daily precipitation extremes in the GBM basin

Preliminary Result

> Dividing into sub-basins helps to study precipitation in finer detail

Study focuses on 32 hydrological sub-basins of GBM to examine the pre-monsoon and monsoon precipitation

Correlation of monsoon precipitation between 45220 sub-basin with all sub-basin in GBM

Correlation of pre-monsoon and monsoon precipitation in sub-basins of GBM

Future Work

Calculate flow length to the outlet for every PERSIANN-CDR grid cell

- Study the relationship between ENSO and precipitation
- Correlation between shoreline change data and seasonal precipitation and local daily precipitation extremes in the GBM basin

References

- Crawford, T. W., Rahman, M. K., Miah, M. G., Islam, M. R., Paul, B. K., Curtis, S., & Islam, M. S. (2020). Coupled Adaptive Cycles of Shoreline Change and Households in Deltaic Bangladesh: Analysis of a 30-Year Shoreline Change Record and Recent Population Impacts. *Annals of the American Association of Geographers*, 0(0), 1–23. <u>https://doi.org/10.1080/24694452.2020.1799746</u>
- Curtis, S., Crawford, T., Rahman, M., Paul, B., Miah, M. G., Islam, M. R., & Patel, M. (2018). A hydroclimatological analysis of precipitation in the Ganges-Brahmaputra-Meghna river basin. *Water (Switzerland)*, *10*(10), 1–11. https://doi.org/10.3390/w10101359
- Crawford, T. W., Islam, M. S., Rahman, M. K., Paul, B. K., Curtis, S., Miah, M. G., & Islam, M. R. (2020). Coastal Erosion and Human Perceptions of Revetment Protection in the Lower Meghna Estuary of Bangladesh. *Remote Sensing*, 12(18), 3108. <u>https://doi.org/10.3390/rs12183108</u>
- Curtis, S., Crawford, T., Munshi, K., & Paul, B. (2017). Monsoon Dynamics in the Ganges-Brahmaputra-Meghna Basin. 1(November), 4865. https://doi.org/10.3390/chycle-2017-04865

Thank You

Dr. Scott Curtis

