Roles of TAO/TRITON and Argo in tropical Pacific observing system: An OSSE study for multiple time scale variability

Jieshun Zhu^{1,2}, Stylianos Flampouris^{3*}, Guillaume Vernieres⁴, Arun Kumar¹, Avichal Mehra⁵, Meghan Cronin⁶, Dongxiao Zhang⁷, Samantha Wills⁷, Travis Sluka⁴, Jiande Wang³, Wanqiu Wang¹

¹NOAA/NWS/NCEP/CPC; ²ESSIC/UMCP; ³IMSG at NOAA/NWS/NCEP/EMC; ⁴JCSDA; ⁵NOAA/NWS/NCEP/EMC; ⁶NOAA/PMEL; ⁷CICOES/UW

Support from CVP/CPO is acknowledged for the work

Experimental setup

Current TPOS configuration for OSSE

- > **DA system:** 1° MOM6Solo + JEDI-based 3DVar
- > **Nature Run:** A free run with a modified CFSv2
- > Atmospheric forcing: daily from Nature Run
- > Synthetic Obs. sampling:
 - TAO/Argo with current configurations from Nature Run
 - TAO is sampled every 24 hours (vs. 10min in reality)
 - Argo is sampled every 3x3 box every 10 days within TP

	List of Experiments				
Experiments	Assimilated data	Correlation Scale	Obs. error	Exp. length	
noDA	none	700km	0.1 degree for T and 0.03 psu for S	5 years	Assimilations conducted once per day @12z, after a 13-year model spin-up
crtTAO	T profiles (and a few S) every day with current TAO configurations				
Argo	T/S profiles every 3x3 box and every 10 days				
crtTAO+Argo	Both TAO and Argo profiles				

Analysis Method

- > Mean bias: 5-year mean state ($\overline{\mathbf{V}}$)
- > Variability (*V*'):

multiple time scales (V^{LF}+V^{IS}+V^{HF})

$$V'=V^{LF}+V^{IS}+V^{HF},$$

where $V^{LF} = \frac{1}{91}\sum_{k=-45day}^{45day} V',$
 $V^{IS} = \frac{1}{21}\sum_{k=-10day}^{10day} V' - \frac{1}{91}\sum_{k=-45day}^{45day} V',$ and
 $V^{HF} = V' - \frac{1}{21}\sum_{k=-10day}^{10day} V'.$

Summary and discussions

- Both TAO and Argo could effectively improve the estimation of mean states and low-frequency variations (for TAO, temperature only);
- For the intraseasonal variability, Argo presents significant improvements more than TAO (except for regions close to TAO sites);
- For the high-frequency variability, both TAO and Argo have little capability in improving its estimates. (TAO -- spatially too coarse; Argo -- temporally too coarse).

Further work Repeat ocean data assimilation experiments with various future configurations of TAO and Argo under consideration by the TPOS 2020 Project. Sea surface Satellites integral Proposed reconfiguration x = Omitted = Added TAO = Added ADCP = Double Argo 150°E 180° 150°W 120°W $\bigcirc nCO_2$

Backup Slides

Nature Run:

CFSm501 includes two major modifications in operational CFSv2: 1) The SAS atmospheric convection scheme=>RAS 2) Near the ocean surface, 10-meter vertical resolution=>1-meter

Improved simulations of the MJO, barrier layer distribution/thickness, intraseasonal SST/SSS variance.....

A JEDI-based Ocean Data Assimilation System: next generation GODAS

A hybrid-EnVar system being developed at JCSDA and EMC

Courtesy of S. Flampouris

- Ocean: MOM6 (0.25° spatial resolution; 75 layer hybrid vertical coordinates)
- Sea-Ice: Los Alamos CICE5/6 (same as the ocean)
 - Data assimilation framework: Joint Effort for Data assimilation Integration- Sea-Ice Couple Data Assimilation (JEDI-SOCA)
- Capability to assimilate a wide array of observations: T & S profiles, SST, altimetry, sea ice concentration, etc.