Climate predictability on seasonal timescales over South America from NMME models through ANOVA

Luciano Andrian, Marisol Osman and Carolina Vera

lucianoandrian25@gmail.com

45th Climate Diagnostics & Prediction Workshop - 20th to 22nd September 2020

Goals

- » Assess the predictability of the South American climate on seasonal timescales represented by the models participating in the North American Multiple Model Ensemble Project (NMME).
- » Analyze the decomposition of the total variance of precipitation and temperature in the contribution from the signal, bias, structural model uncertainty and noise.
- » Estimate the potential predictability and analyze the performance of climate models in forecasting the precipitation and temperature.

	Institution	Model	Hindcast	Members
SON and DJF precipitation and temperature forecast <u>Lead 1 month</u> (e.g. DJF forecast with initial condition from November) <u>Hindcast</u> : 1982 - 2010	COLA	CCSM4	1982-2010	10
	GFDL	CM2p1	1982-2010	10
	GFDL	FLOR-A05	1982-2018	12
	GFDL	FLOR-B01	1982-2018	12
	NASA	GEOS5	1982-2010	4
	NCEP	CFSv2	1982-2010	24
<u>Observed data set:</u> Temperature CPC Precipitation CMAP	СМС	CanCM4i	1982-2010	10
	ECCC	GEM-NEMO	1982-2018	10

Variance partition through ANOVA

An individual data value X_{tmk} (t denoting time, m model and k realization) can be decomposed into:

$$\mathbf{X}_{tmk} = \boldsymbol{\mu} + \boldsymbol{\alpha}_{t} + \boldsymbol{\beta}_{m} + \boldsymbol{\gamma}_{tm} + \boldsymbol{\xi}_{tmk}$$

And the Total Squared Sum, $TSS = \sum_{tmk} (x_{tmk} - x_{000})^2$, can be decomposed in:

 $TSS = SS\alpha + SS\beta + SS\gamma + SS\xi$

SS α : fraction of variance associated to **signal** (α_t) SS β : fraction of variance associated to the **bias** β_m SS γ : fraction of variance associated to the differences between the models in their responses to a common forcing. SS ξ : fraction of variance associated with **noise** (ξ)

ANOVA

We use ANOVA to estimate the fraction of the variance associated to each term, for instance, the fraction of variance determined by bias between models (β)

 $(SS\beta - \frac{M-1}{T(Ktotal-1)} SS\xi) / TSS$

And in particular the **potential predictability**, defined as:

$$PP = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\epsilon}^2}$$

Predictability

Temperature Multi-model ensemble

Precipitation is less predictable than temperature.

A significant increase in **precipitation** predictability is observed when the CFSv2 model is removed from the set, especially in summer.

Precipitation Multi-model ensemble

Fraction of total variance of **temperature** determined by **Bias**

Fraction of total variance of **precipitation** determined by **Noise**

The **biases** of the model contribute significantly to the total variation in **temperature**, while **noise** is the most relevant for **precipitation**.

ANOVA

Structural term -> differences between the models in their responses to a common forcing.

Fraction of total variance of **temperature** determined by **structural term**

The **structural term** for **precipitation** becomes smaller when the CM2p1 model is removed from the ensemble. A first inspection shows that CM2p1 may lack an adequate representation of the variability associated with ENSO in the region

Fraction of total variance of **precipitation** determined by **structural term**

Anomaly Correlation coefficient

Temperature ACC NMME vs **CPC** data set

Precipitation ACC NMME vs **CMAP** data set

Forecasting skill for multi-model ensemble for **temperature** is better in the tropical region and lower in north-central Argentina. For **precipitation** the skill is lower, the maximum is in the equatorial zone and the second maximum is over SESA.

Conclusions

- » **Predictability** maximizes in the Tropics, over the Amazon region and presents a second maximum in the extratropics over southeastern South America (SESA).
- » The **precipitation** is less predictable than **temperature**, and **precipitation** predictability increases when CFSv2 model is removed from the ensemble. Is it because CFSv2 uses lagged ensembles to make the forecasts?
- » The **model biases** are an important contributor to the total variance of the **temperature** while the **noise** is the most relevant for **precipitation**.
- » For **temperature**, the structural term is largest in SESA. For precipitation, CM2p1 variability explains most of the structural term, possibly due to a lack of an adequate representation of the variability associated with ENSO in the region.
- » Forecasting skill is better for **temperature** than for **precipitation**. The **precipitation** shows two zones with significant skill, which is maximum in the equatorial zone and lowest in SESA

Thank you

lucianoandrian25@gmail.com

