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How Do You Compare Serially Correlated
Time Series?
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Autoregressive models of order p: AR(p)

We assume time series Xt and Yt come from the models

Xt = φX1 Xt−1 + · · · + φXp Xt−p + γX + εXt

Yt = φY1 Yt−1 + · · · + φYp Yt−p + γY + εYt ,

where
εXt

iid∼ GWN(0, σ2
X ) and εYt

iid∼ GWN(0, σ2
Y ).

φ21, . . . , φ
X
p , γX , σ

2
X
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Are the parameters of the AR(p) models equal?

null hypothesis H0 : φX1 = φY1 , . . . , φ
X
p = φYp , σ

2
X = σ2

Y

alternative hypothesis HA : at least one parameter differs

γX and γY are unrestricted, to forgive biases.
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I An AR(p) model uniquely specifies the ACF and power spectra.

I Equality of AR(p) models implies equality of ACFs and of spectra.

I If two time series could have come from the same AR(p) model,
then I will say they are statistically indistinguishable.
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Likelihood Ratio Test

deviance D = log

(
σ̂2νX+2νY

0(
σ̂2νX
X

) (
σ̂2νY
Y

))

σ̂2
X : unbiased estimate of σ2

X

σ̂2
Y : unbiased estimate of σ2

Y

σ̂2
0 : unbiased estimate of σ2 under H0

νX : degrees of freedom for Xt

νY : degrees of freedom for Yt

D vanishes if and only if σ̂2
X = σ̂2

Y and φ̂Xj = φ̂Yj , and is positive otherwise
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Xt = φX1 Xt−1 + · · · + φXp Xt−p + γX + εXt

Yt = φY1 Yt−1 + · · · + φYp Yt−p + γY + εYt ,

This test uses prewhitened variances, rather than variances directly.

ε̂Xt = Xt −
(
φ̂X1 Xt−1 + · · · + φ̂Xp Xt−p + γ̂X

)
For large sample size, ε̂Xt is approximately white noise.
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Application

I Variable: AMV index: annual-mean SST averaged over the Atlantic
between 0 − 60◦N.

I Model Simulations: Pre-industrial control simulations of SST from
phase 5 of the Coupled Model Intercomparison Project (CMIP5).

I Observations: the 165-year period 1854-2018 from ERSSTv5.

I Removal of Forced Variability: Response to human and natural
forcings assumed to be removed after regressing out second-order
polynomial over 1854-2018 (other approaches were explored but not
included in this talk).

I p selection: AICr selects p = 1 for most CMIP5 models, suggests
p = 3 is adequate for all but two CMIP5 models. We use AR(3).

I Validation: Time series from the earlier half (1854-1935) are
compared to time series in the later half (1936-2018).
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In terms of the AMV index, more than half
the models are inconsistent with observations.
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Multivariate Generalization

Vector Autoregressive Model (p)

zt = A1zt−1 + · · · + Apzt−p + µ + εt ,

I For p = 1, this is equivalent to Linear Inverse Model (LIM).

I Deviance statistic is analogous to univariate case, except with
variances replaced by determinants of covariance matrices.
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Laplacian Eigenfunctions over the Atlantic

Laplacian 1 Laplacian 2 Laplacian 3

Laplacian 4 Laplacian 5 Laplacian 6

DelSole and Tippett, 2015, J. Climate
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Order p and number of Laplacians selected
using Mutual Information Criterion (MIC)

This criterion also can be used to select

I number of EOFs in LIM

I number of EOFs in CCA

A VAR(1) with 7 Laplacians is adequate for most models.

DelSole and Tippett, 2021, Stat
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Laplacian Eigenfunctions over the Atlantic
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By including smaller scale variability
(∼ 2000km), virtually all models are unrealistic.
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In What Ways Do the Statistics Differ?
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zt = A1zt−1 + · · · + Apzt−p + µ + εt

εt ∼ GWN(0,Γ)

noise parameters Γ

AR parameters A1, . . . ,Ap

I Difference in noise parameters?

I Implies differences in prewhitened variances.
I Implies differences in one-step prediction errors.

I Differences in AR parameters?

I Implies differences in memory.
I Implies differences in predictability.
I Implies differences in “dynamics”
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D = D1:A + D0:1

total difference in noise difference in AR parameters

Under the null hypothesis, D1:A and D0:1 are independent and
have chi-squared distributions.
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By applying discriminant analysis:

I Noise differences can be further decomposed.

I Differences in AR parameters decomposed using Generalized SVD.

no more time...
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MIROC−ESM; t=0 year

ersst; t=0 year

Difference; t=0 year

MIROC−ESM; t=1 year

ersst; t=1 year

Difference; t=1 year
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Summary

I We propose a rigorous statistical method for comparing simulations
and observations that accounts for correlations in space and time.

I The test statistic D measures difference in VAR processes.

I A new criterion called Mutual Information Criterion (MIC) is
used to select variables and maximum lag in VAR models

I For annual-mean North Atlantic SST, virtually all models are
unrealistic after smaller-scale (∼ 2000km) information is included.

I Discrimination techniques can be used to optimally diagnose
differences in noise statistics and differences in AR parameters.

I Difference-in-dynamics SVD shows some climate models produce
one-year predictions with the wrong sign over large spatial scales.

I DelSole and Tippett, 2020, 2021a, 2021b, Advances in Statistical
Climatology, Meteorology and Oceanography (ASCMO)
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