Evaluation of Sub-seasonal Arctic Sea ice hindcasts in a UFS-based System

Yanyun Liu1,2, Wanqiu Wang1, Weiyu Yang1,2, Jieshun Zhu1, Arun Kumar1, and David DeWitt1

1NOAA/NWS/NCEP Climate Prediction Center, 2Innovim LLC
Introduction

- CPC developed an experimental weekly sea ice forecast system (CFSm5) based operational CFSv2 with changes to physics (MOM5) and initialization

- CPC started to produce weekly sea ice outlook for weeks 1-6 in May 2018

- Sea ice forecasts from CFSm5 initialized from CPC sea ice initialization system (CSIS) have significantly higher skill than operational CFSv2 for both seasons.

- CPC is planning to transition CFSm5 sea ice forecast system to a new FV3-based Unified Forecast System (UFS) framework.
UFS P5 parameter adjustments

- Model (Unified Forecast System P5)
 - Atmosphere: FV3 v15 (C96)
 - Ocean: MOM6 (1/4°)
 - Sea ice: CICE6

- Bias with default configuration
 - Large negative bias in summer sea ice extent in central Arctic initialized from June 1st
 - This bias is related to positive downward SW bias in regions surrounding central Arctic & Northern Pacific

- UFS P5 experiments to reduce model errors
 - Three cloud parameters tested
 - Two options for freezing temperature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Critical cloud water radius</th>
<th>CCN over ocean</th>
<th>Cloud water to rain autoconversion</th>
<th>Freezing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10e-6</td>
<td>100</td>
<td>0.50</td>
<td>A function of salinity</td>
</tr>
<tr>
<td>Final selection</td>
<td>12e-6</td>
<td>120</td>
<td>0.45</td>
<td>Constant</td>
</tr>
</tbody>
</table>

- Sea ice cover in Sep/2015 greatly improved

- Positive downward SW bias reduced
- Error reduction confirmed within experiments for other years
Evaluation of 45-day hindcasts

- 45-day hindcasts with UFS P5
 - Hindcast period: 2012-2020
 - Four ensemble members Initialized each day
 - Melt-season (initialized from Apr 1-Sep 30) completed

- Similar mean bias in UFS and CFSm5
- Relatively larger bias in CFSv2
- Reduced bias in MME
Evaluation of UFS P5 for melt season ICs (Apr-Sep 2012-2020)
Sea ice Heidke Skill Score (2012-2020) for ens-mean SIC of r1-r4

- Generally comparable prediction skill for UFS P5 and CFSm5, better than CFSv2 except for Sep ICs. Better prediction skill than CDR persistent forecasts.

$$HSS = \frac{AC - AC_e}{AT - AC_e}$$

- \(AC\): Area of correct forecast
- \(AC_e\): Area of expected correct forecast
- \(AT\): Area of total forecast boxes
- Sea ice exists if SIC > 0.15
Climatology week 4 SIC in UFS is much closer to CDR than CFSm5 for Jan 01 ICs, especially around the Bering Sea
Summary and Future work

• There are bias in UFS-P5 control configuration in downward SW, causing less sea ice in central Arctic in summer time

• Parameter adjustments reduce model bias in terms of downward SW and SIC

• For melt seasons, there is comparable prediction skill for UFS P5, CFSm5 and MME, better than CFSv2. Better prediction skill than persistence forecasts.

• For freeze up seasons, there is larger improvement in Bering Sea.

• Continue to perform 45-day hindcasts from 2012-2020 for freeze up seasons and compare with CFSm5/CFSv2

• Develop bias correction algorithms for UFS based real-time sea ice weekly forecasts