Subseasonal to Seasonal Prediction of Tropical Cyclone Formation in the Northern Hemisphere: Using Statistical-Dynamical Methods to Leverage the Strengths and Mitigate the Weaknesses of CFS Version 2

David Meyer, Statistical Solutions LLC david.statistical.solutions@gmail.com
Tom Murphree, Naval Postgraduate School murphree@nps.edu
Bruce Ford, Clear Science, Inc. bruce@clearscienceinc.com

Forecast of Elevated TC Formation probabilities in Western North Pacific
Valid: 01-31 Jul 2021
Issued: 31 Jun 2021
Shading: probability categories
Dots: observed formations

Forecasts available at:

Presented at the 46th Climate Diagnostics and Prediction Workshop
Motivations and Approach

1. Produce skilled TC formation forecasts at leads not possible with dynamical models

2. *System’s statistical model is trained on archived LSEF forecasts from CFSv2.*

3. Forecast system forced with dynamical forecasts of large-scale environmental factors (LSEFs) that are easier to forecast than tropical cyclogenesis

4. The forced statistical model produces easily understood probabilistic forecasts of elevated TC formation potential.

5. Forecasts have spatial and temporal resolution.

6. **S2S formation forecasting is the essential first step for S2S forecasting of TC tracks and intensities**

7. Forecasts help fill the week 4 to month 2 gaps between CPC’s GTBH forecasts and seasonal forecasts.
Build statistical model based on relationships between TC formations and LSEFs (JTWC / HurDat II best tracks and CFSv2)

Statistical model relates the LSEFs to TC formation probability

Force statistical model with dynamical, ensemble-based, CFSv2 LSEF forecasts

Produce statistical-dynamical model output: ensemble-based forecasts of TC formation probabilities:
1-day lead forecasts to 2.5 month lead monthly outlooks

1. LSEFs = large scale environmental factors:
 a. Western North Pacific (WNP): SST, shear_{200-850}, Z_{850}, tropical cyclone heat potential
 b. North Atlantic (NA): SST, shear_{200-850}, velocity potential_{200}

2. Inputs: 6 hourly, 1/ 0.5° resolution
3. Outputs: daily, 1° resolution
4. Statistical model built by use of logistic regression
5. Each LSEF influences TC formation at over a 99% confidence level
6. S2S forecasts: 0.5, 1.5, and 2.5 month leads, 1-month valid period, ~120 ensemble members
7. For both the WNP and the NA:
 a. Forecasting is automated
 b. Does not require a forecaster-in-the-loop
 c. Objective, not subjective
 d. Quantified formation probability
1. Inspired by work of Dr. Bill Gray: there are large scale environmental factors that are necessary but not sufficient for TC genesis
 a. Dr. Gray’s LSEFs are all significant (p < 0.05)
 b. Not all are well predicted
 c. Multicollinear relationship exists between many
2. Pool of potential LSEFs expanded to include those that are better predicted and more distinct than Gray’s
3. Training data: archived CFSv2 forecasts
 a. Statistical model forced with the data from the same source it was built on.
 b. This training substantially improves skill and reduces biases compared to training based on reanalysis data.
4. Skilled at all leads.

There is a calculated risk in attempting to build a regression model based on a relatively small training data set (WNP: 2011-2019 / NA: 2011-2020)
Example Forecast of Elevated TC Formation Potential
Valid: 01-31 Aug 2018, Issued: 31 Jul 2018

TC formations occurred during this valid period at pink dot locations.

Blue: 90%, Green, 70%, Yellow 50% of formations for Aug 2011-2019
TC Formation Forecast Features

1. Three probability categories or *tiers* show:
 a. A small area where 50% of TCs will form
 b. A large area in which 90% of TCs will form
 c. An in-between area that is about half the size of the 90% area in which 70% of the TCs will form

2. Tiers are not a measure of confidence. They are heuristically determined probability levels to capture 90, 70, and 50% of TC formations on a monthly basis

4. Multi-objective optimization: Maximize hits while minimizing the size of the contoured area.

5. Skill as good at the start and end of the season as in the middle.
TC Formation Forecasts vs. Climatology

1. Forecasted areas are much smaller than climatologically possible formation areas.
2. This is especially true for the 50% and 70% areas.

Lead time: Time from issue date to middle of valid period.
Ex: Issued on 31 Jul and valid for 01-31 Aug indicates a 0.5-month lead.
TC Formation Forecasts: Variations by Lead Time

1. Forecasts tend to be relatively consistent across lead times.
2. As lead time decreases:
 a. Skill increases (number of hits is constant, but the contoured area shrinks)
 b. Forecasts tend to become more focused, with 90% region often slightly shifting and/or contracting

Lead time: Time from issue date to middle of valid period.
Ex: Issued on 30 Apr and valid for 01-31 Jul indicates a 2.5-month lead.
TC Formation Forecasts for a Season

0.5 Month Lead Forecasts and Actual Formations, Jun-Sep 2021

Forecasts vary in physically plausible ways by month and by year.

Lead time: Time from issue date to middle of valid period.
Ex: Issued on 31 Jul and valid for 01-31 Aug indicates a 0.5-month lead.
TC Formation Forecasts: Variations by Lead Time

1. The forecasts tend to be relatively consistent as lead time decreases (i.e., relatively small changes with lead time).
2. Consistency and skill of the 0.5, 1.5, and 2.5 month lead forecasts indicate that there may be skill at leads greater than 2.5 months.
3. The forecasts show promise for more quantification --- for example:
 a. “Given the size and probabilities of the forecast, expect 4-6 TC formations in the valid period.”
 b. “July is expected to be 20-40% more active than last July but still below average overall.”
1. Initial North Atlantic (NA) forecasts are encouraging but still in development.
2. Probability tiers are slightly different than for WNP.
3. Forecasted areas are much smaller than climatologically possible formation areas.
4. This is especially true for the 50% and 70% areas.

Lead time: Time from issue date to middle of valid period.
Ex: Issued on 31 Jul and valid for 01-30 Sep indicates a 1.5-month lead.
Key points: Forecast is clear a function of time of year; Each monthly outlook is demonstrably smaller than monthly climatology; anecdotal skill - above average PCA, above average year
Hindcasts and Skill Assessments

1. Multi-year hindcasting done at 0.5, 1.5, and 2.5 month leads using the archived CFSv2 forecasts of the LSEFs for:
 a. WNP for Jun-Nov 2011-2019
 b. NA for Jun-Nov 2011-2020
2. Skill was evaluated for each month and for the season.
3. In all cases, the forecasting systems were found to be skilled.
4. Examples: probability of detection (POD) and Heidke skill scores (HSS) show skill.
5. Developed and applied two new skill metrics:
 a. **Percent of contoured area (PCA):**
 1. Measures the size of the “net” cast for a given POD.
 2. PCA is the forecast contoured area/total area.
 3. A lower PCA for a given POD is good.
 4. PCA serves the same purpose as false alarm ratio but is better suited than FAR for the types of forecasts we are producing.
 b. **Hits per unit area (HPUA):**
 1. An indicator of reliability.
 2. For a reliable statistical model, as the likelihood of formation increases, the number of formations per unit area increases.
WNP Summary
• Skilled using conventional metrics POD, HSS, TS, ETS (TS and ETS not shown here)
• Skilled compared to climatology, even for the 90% of formations region
• Skilled when using our own metrics to better describe performance (PCA, HPUA)

NA Summary
• Comparable in performance to WNP system
• Less mature (smaller data set for statistical training, no 2021 best track data yet for verification of a fully independent season)

WNP Verification:
• Hindcasted 2011-2019
• Cross-validated 2011-2019
• Re-verified with 2020 best tracks
• 2021 forecasts show skill

NA Verification:
• Hindcasted 2011-2020
• Cross-validated
• 2021 forecasts show skill

* Contours are reduced in Oct/Nov to 80 and 65% to reduce the impact of unusual storms on low activity months
Conclusions

1. Skilled experimental S2S forecasts of TC formations with relatively high temporal and spatial resolution can be produced using a statistical-dynamical forecasting system.
2. The skill of the system is achieved by using archived CFSv2 forecasts of the LSEFs for training the statistical model instead of CFSR or other reanalysis data.
3. The skill of the 2.5-month lead forecasts is similar to that of the 0.5-month and 1.5-month forecasts, indicating that:
 a. There may be skill in forecasting for leads greater than 2.5 months
 b. Additional quantification of activity is possible (e.g., identify on a monthly basis if activity may be above/below average, estimate number of formations, ...)
4. Innovations in skill metrics were needed to more fully assess the forecasts.
5. **Skillful S2S forecasts of TC formation lay the foundation for skillful S2S forecasts of TC tracks and intensities.**
6. Forecasts are updated each Monday during TC season.
7. Forecasts, archived forecasts (2011-current), and verification data can be found on the Statistical Solutions LLC website at:

QUESTIONS?