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Sha, Y., Gagne, D.J., West, G. and Stull, R., 2021. Deep-learning-based 
precipitation observation quality control. Journal of Atmospheric and 
Oceanic Technology.
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Gettelman, A., Gagne, D.J., Chen, C.C., Christensen, M.W., Lebo, Z.J., 
Morrison, H. and Gantos, G., 2021. Machine learning the warm rain 
process. Journal of Advances in Modeling Earth Systems.
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Molina, M.J., Gagne, D.J., Prein, A.F., 2021. A benchmark to test 
generalization capabilities of deep learning methods to classify severe 
convective storms in a changing climate. Earth and Space Science.
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S2S simulations created using CESM2 

(Richter et al. 2021; under review).

Subseasonal reforecasts follow SubX

protocol (Pegion et al. 2019).

Near real-time forecasts are ongoing 

and contribute to the SubX multi-

model mean ensemble.



Temperature skill Precipitation skill

(Richter et al. 2021; under review)



Climatology and lead time bias corrected anomalies

Molina et al. (in prep.)

NOAA Global Precipitation Climatology Project 

(GPCP) Climate Data Record (CDR), Daily V1.3

(1999-2020).

(Adler et al. 2017)



Climatology and lead time bias corrected anomalies

Molina et al. (in prep.)

(Hersbach et al. 2020)

ERA5 Daily Maximum and Minimum Temperature 

Average (1999-2020).



U-Net Architecture (training and validation: 1999-2015)

1024

512 512

256256

128 128

64 64

Input Output

Copy and crop

Upsample 2 x 2

Max pool 2 x 2

Conv 3x3

Conv 1x1

Molina et al. (in prep.)

(U-Net architecture based on 
Ronneberger et al. 2015)
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U-Net Architecture (training and validation: 1999-2015)
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CESM2 
Precipitation Anomaly
11 Ensemble Members

NOAA GPCP 
Precipitation 

Anomaly

Week 3 3 Week Lead Time 

Precipitation Anomaly Precipitation Anomaly



U-Net Architecture (training and validation: 1999-2015)

Molina et al. (in prep.)
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Skill of Week 3 Temperature Error Prediction (2016-2019)

Molina et al. (in prep.)

All Seasons (0.41) DJF (0.39) MAM (0.44)

JJA (0.44) SON (0.40)

Pearson Corr. HigherLower



Skill of Week 3 Precipitation Error Prediction (2016-2019)

Molina et al. (in prep.)

All Seasons (0.31) DJF (0.34) MAM (0.32)

JJA (0.32) SON (0.33)

Pearson Corr. HigherLower



Skill of Week 3 Precipitation Prediction (2016-2019)

Molina et al. (in prep.)

All Seasons DJF (+0.66%) MAM (+1.59%)

JJA (+1.45%) SON (+0.17%)

ACC More SkillLess Skill



Future work and 

• Application of Explainable AI.

• Comparison to other bias correction

methods.

• Creation of a large ML-based ensemble.


