

How Skillful are Collective El Niño-Southern Oscillation (ENSO) Predictions

Michelle L'Heureux (NOAA CPC), Rohan Shroff (Cornell U.), and Michael Tippett (Columbia U.)

Current ENSO Team: Emily Becker (CIMAS/Miami)*, Tom Di Liberto (NOAA CPO)*, Azhar Ehsan (IRI), Zeng-Zhen Hu, Nathaniel Johnson (NOAA GFDL)*, Arun Kumar, Michelle L'Heureux, Wanqiu Wang, Caihong Wen, Jieshun Zhu * ENSO blog affiliates

> 47th Climate Diagnostics and Prediction Workshop Logan, Utah 25-27 October 2022

Background

- Team of 10-13 forecasters whose Oceanic Nino Index, ONI (seasonal average of Nino3.4 index) forecasts are averaged together to produce the Official, <u>Consensus</u> outlook.
- CPC started making these predictions in June 2015 so we could compute probabilities of a *strong* El Niño in 2015-16.
 Simply providing 3-category probabilistic forecasts for El Niño-Neutral-La Niña wasn't adequate.
- 7 years of real-time forecasts (2015-2022)
- The team provides forecasts beginning at -2 lead time up to +7 lead time (publicly, we display -1 lead onwards).

Forecast issued on the **2nd Thursday** of every month. What we Learned this Past Summer....

- The Consensus offers smaller mean squared error (MSE) than the individual forecasters who contribute to it.
- We're stronger together!

Some Follow On Questions...

- (1) How does the Consensus (or Official) average forecast compare to the North American Multi-Model Ensemble (NMME) average?
- (2) If there are differences (spoiler: there are), what may be driving Consensus forecasts to be different from the NMME forecasts?
- (3) Can we make the forecasts better?

- (1) How does the Consensus (or Official) average forecast compare to the North American Multi-Model Ensemble (NMME) average?
- -- North American Multi-Model Ensemble (NMME) is an average of 6 participating seasonal climate models
- -- important point of comparison because we receive NMME right as we make the ENSO forecast.
- -- expect the Consensus/Official forecast to look similar to the NMME...

Why does the Consensus Forecast have smaller error (MSE)?

Start Time

In this 7 year sample : 2 El Niño winters and 4 La Niña winters

Residual forecast is on the warmer side. Interesting.

Any seasonal differences? Bigger Mean Squared Error for NMME numbers = 0.6 Consensus error is larger Larger Error 6 (worse) than NMME for fcsts 0.5 Forecast Lead Time made in June/July 4 0.4 0.3 2 **MSE for Consensus minus NMME** 0.6 0.2 0 6 0.1 0.4 All predictions Forecast Lead Time 0.2 4 made in early N D 0 1 Start Time March out to +7 0.0 Mean Squared Error for Consensus 2 season lead. -0.2 0.6 0 6 -0.40.5 Forecast Lead Time -2 4 -0.6 0.4 M N D F 5 0 4 Start Time 0.3 2 Consensus error is smaller 0.2 0 (better) than NMME for forecasts - 0.1 made in Feb/Mar -2 M N D F A M S 0 Start Time

(1) How does the Consensus average forecast compare to the North American Multi-Model Ensemble (NMME) average?

(2) If there are differences, what may be driving Consensus forecasts to be different from the NMME forecasts?

Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient

ALLAN H. MURPHY

Department of Atmospheric Sciences, Oregon State University, Corvallis, Oregon (Manuscript received 1 February 1988, in final form 11 April 1988)

SS is Mean Squared Error Skill Score (or MSESS). $SS(f, \bar{x}, x)$

$$= r_{fx}^2 - [r_{fx} - (s_f/s_x)]^2 - [(\bar{f} - \bar{x})/s_x]^2. \quad (12)$$

correlation variance bias term ratio term

(M. Tippett reminds us that the exact same breakdown works for Brier Skill Score too)

What does bias look like?

Red: Forecast mean is warmer than observed mean.

Blue: Forecast mean is colder than observed mean.

Start Time

Recall, this was our plot for the

Consensus residual (uncorrelated with NMME). We were finding bias.

Average Residual Fcst

What does the variance ratio look like?

Orange: Forecast variance is more than observed variance

Purple: Forecast variance is less than observed variance

(2) If there are differences, what may be driving Consensus forecasts to be different from the NMME forecasts?

Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient

ALLAN H. MURPHY

Department of Atmospheric Sciences, Oregon State University, Corvallis, Oregon

(Manuscript received 1 February 1988, in final form 11 April 1988)

SS is Mean Squared Error Skill Score (or MSESS). $SS(f, \bar{x}, x)$

$$= r_{fx}^2 - [r_{fx} - (s_f/s_x)]^2 - [(\bar{f} - \bar{x})/s_x]^2. \quad (12)$$

To get a large skill score \rightarrow

Want a large Want to make this correlation variance ratio term as small as possible.

Want to make this bias term as small as possible.

To make this To make this zero: zero: f = x $r = (S_{f} / S_{x})$

What <u>should</u> the variance ratio look like?

What <u>should</u> the bias look like?

Role of Sampling? Too warm in this period with 4 La Niñas.

(3) Can we make the forecasts better?

-- Yes! We can adjust the forecast by multiplying by the regression coefficient and subtracting the bias.

-- regression coefficient is equal to correlation if forecast variance = observed variance, otherwise you need to scale by the *variance ratio*.

NMME error decreases more after *the variance* is corrected.

Consensus error decreases more after *the bias* is corrected.

Note: Not cross validated.

Conclusions:

(1) How does the Consensus (or Official) average forecast compare to the North American Multi-Model Ensemble (NMME) average? Any seasonal differences?

-- Correlation is nearly the same. Consensus has smaller errors than NMME (especially for predictions made in Jan-Mar).

(2) If there are differences, what may be driving Consensus forecasts to be different from the NMME forecasts?

-- NMME errors are mostly attributable to forecast variance errors (too large) and Consensus errors are mostly attributed to forecast bias (too warm) errors.

-- likely sampling plays a role here with only 7 years of data.

(3) Can we make the forecasts better?

-- yes, regression-based methods are simple and effectively correct for variance and bias errors.

- -- consensus (humans) need to check their biases
- -- model forecasts need to reduce their amplitudes (especially in the early spring)

Extra Slides

(1) How does the Consensus average forecast compare to the North American Multi-Model Ensemble (NMME) average?

(3) Can we make the forecasts better?

