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Heat Transport in the Earth System
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Objectives: Identify processes in the ocean, atmosphere, sea ice
important for Bjerknes compensation and its inter-model spread

Bjerknes compensation (BJC) : Tendency for changes in the
atmosphere heat transport (AHT) and ocean heat transport (OHT)
to compensate each other on decadal to multidecadal timescales.
BJC is important for the Arctic energy budget.

CORRELATION(AHT,OHT) ON DECADAL TO LONGER TIMESCALES IN THE PICONTROL EXPERIMENT
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Approach : Characterize OHT and its CORRELATION with AHT

Components
Key Result: The longwave and turbulent fluxes
! SW wa 2Froa; response explain the anti-correlation and the inter-
l : model spread at northern high latitudes.
Atmosphere : I 2:FSi Area/Variance Weighted Correlations of Surface and TOA fluxes

1.0 = MULTI-MODEL MEAN
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v OHT anomalies have longest memory

v AHT anomalies must approximately balance flux
divergence of TOA and Surface fluxes

Kurtakoti, P., Weijer, W., Veneziani, A., Verma, T., and Rasch, P. (2022)
Compensation between Poleward Atmospheric and Oceanic Heat Transports in
CMIP6 Climate Simulations (in prep)
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57 / in response to increased particularly in the
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- 3. Heat gained and lost in regions occupied by clouds is a
A | factor of 2-4 times lower than the clear sky regions (second
LY < row).
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: 5. The clear sky long wave cooling is the dominant feature
cerl b associated with increased events (third row).

ik 8 n i Sea Ice and Cloud Radiative Contribution
Breakdown at the surface and TOA of Longwave
Fluxes.
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Key Result: Clear sky dominates the
shortwave response of the
atmosphere.

A warmer ocean during enhanced causes sea
ice to melt and exposes the ocean, which has a much
lower albedo than sea ice.

The top row of the regression map shows that the
energy entering that atmosphere at TOA in the clear sky
(b) is passed to the ocean (a) during anomalous
poleward , primarily in sea ice melt regions in
the Sea of Okhotsk, Labrador, Greenland, and Barents
Seas, with little impact on the atmosphere (c).

Clouds tend to counter the clear sky impacts over
marginal ice seas, reducing the incoming energy at the
TOA (e) and passing less energy to the ocean in those
regions (d), with little impact on the atmosphere itself
(f).

The clear sky radiative flux dominate the all-sky flux
anomalies poleward of 65°N over ice (panels g-i).

Sea Ice and Cloud Radiative Contribution
Breakdown at the surface and TOA of
Shortwave Fluxes.
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