Circulation Study: On the Relationship of Temperature and Precipitation with 500-hPa Heights at the Week 3-4 Timescale

Cory Baggett ${ }^{1}$
Emerson Lajoie ${ }^{\text {', Johnna }}$ Infanti', and Michael Goss ${ }^{\mathbf{1}, 2}$
'Climate Prediction Center / NCEP / NWS / NOAA
${ }^{2}$ Earth Resources Technology, Inc.
$47^{\text {th }}$ Climate Diagnostics and Prediction Workshop

October 26, 2022

CPC's Week 3-4 Temperature and Precipitation Outlook

(*) Weeks 3-4 Temperature Outlook

(*) Weeks 3-4 Precipitation Outlook

500-hPa Heights Forecast Tools

What role do $500-\mathrm{hPa}$ heights play during the

 forecasting process?

- While CPC does not issue an official Week 3-4 500-hPa heights outlook, the circulation is a critical component of the forecasting process for temperature and precipitation.

500-hPa Heights Forecast Tools: Dynamical Models

$500-\mathrm{hPa}$ Heights Forecast Tools: Statistical Models

2. Statistical Models:

Experimental mergedMLR

Predictors: ENSO, MJO, Day +14 NAO, Day+12 PNA, and Trend

Simple MJO Composites

Pentad +4 following phase 6 of the MJO during OND

500-hPa Heights Forecast Tools: Forecast Blends

Auto Blend
MLR 35\%, ECMWF 30\%, CFSv2 25\%, JMA 10\%

3. Forecast Blends:

SubX
110-Member, Multimodel Ensemble from SubX

2500: Week 3-4 Subsample Ensemble Mean Anomaly Vald Dates: 290ct2022 10 11 Now 2022

ECMWF (39) GEFSN12 (20) CFSV2 (19) ECCC GEMN4 (33) JMA 133

Manual Blend
MLR 25\%, ECMWF 25\%, CFSv2 15\%, JMA 10\%

Ensemble Subsample 124-Member, MultiModel Ensemble from the ECMWF, CFSv2, JMA, ECCC, and GEFSv12

Pattern Recognition

How do forecasters use 500-hPa heights to inform Week 3-4 temperature and precipitation outlooks?

Temperature, Precipitation, and $500-h P a ~ H e i g h t s ~$	4. Forecaster Knowledge

Above or below
normal
temperature and
precipitation
outlooks, for the
Week 3-4 period

- Pattern recognition ($500-\mathrm{hPa}$ heights analysis)
- Forecasters have a good knowledge of the relationship that anomalous temperature and precipitation have with $500-\mathrm{hPa}$ heights.
- However, incorporation of this knowledge has generally been subjective in nature.
- Further, sometimes the finer details of the relationship, such as regional dependencies and seasonal evolution, are not always readily apparent.
- Thus, a new tool has been constructed to provide objective information on the relationship of $500-\mathrm{hPa}$ heights to temperature and precipitation across CONUS/AK as a function of season in the form of correlations and 3×3 contingency tables.

Observed Correlations: Heights vs Temperature

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation

Temperature vs Heights (Z500)

Correlation of Temperature vs Heights (Z500)

cimate nomal 1991-2020

Temperature vs Southerlies (dZ500/dx)
Correlation of Temperature vs Southerlies (dZ500/dx)

climate normal 1901-2020										
-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1

Temperature vs Westerlies (-dZ500/dy)
Correlation of Temperature vs Westerlies (-dZ500/dy)

climate nomst: 1981-2020

Observed Correlations: Heights versus Precipitation

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation

Precipitation vs Heights (Z500)

climate normat: 1991-2020

Precipitation vs Southerlies (dZ500/dx)
Correlation of Precipitation vs Southerlies (dZ500/dx)

climate normal: 1999-2020

Precipitation vs Westerlies (-dZ500/dy)
Correlation of Precipitation vs Westerlies (-dZ500/dy)

climate normal. 1991-2020

3-Category Contingency Tables: Observed Heights vs Observed Temperature

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation
Verification: Observed - ECMWF - GEFSv12 - CFSv2 - ECCC - JMA
Season: ALL - DIF - IFM - FMA - MAM - AMJ - MJJ - IIA - IAS - ASO - SON - OND - NDJ

climate normal: 1991-2020

3-Category Contingency Tables: GEFSv I 2-Forecasted Heights vs Observed Temperature

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation
Verification: Observed - ECMWF - GEFSv12-CFSv2 - ECCC - JMA
Season: ALL - DJF - IFM - FMA - MAM - AMJ - MJJ - IJA - IAS - ASO - SON - OND - NDJ

3-Category Contingency Tables: Observed Heights vs Observed Precipitation

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation
Verification: Observed - ECMWF - GEFSv12 - CFSv2 - ECCC - JMA

Season: ALL - DJF - IFM - FMA - MAM - AMJ - MJI - IIA - IAS - ASO - SON - OND - NDJ

cilmate normal: 1991-2020 percentage

3-Category Contingency Tables: GEFSv I2-Forecasted Heights vs Observed Precipitation

Week 3-4 Circulation

Week 3-4 Circulation: Temperature Correlations - Precipitation Correlations - Temperature Verifications - Precipitation Verifications - Documentation
Verification: Observed - ECMWF - GEFSv12 - CFSv2 - ECCC - JMA
Season: ALL - DJF - IFM - FMA - MAM - AMJ - MIJ - IJA - IAS - ASO - SON - OND - NDJ

Conclusions

- The tool provides a quick, objective glance of the strength of the relationship between $500-\mathrm{hPa}$ Heights with temperature and precipitation over CONUS/AK across all seasons.
- The work is still experimental. We are seeking input from the forecasters and the community to make the tool as useful as possible in real-time.

Thank you! Questions?

cory.baggett@noaa.gov
emerson.lajoie@noaa.gov
johnna.infanti@noaa.gov
michael.goss@noaa.gov

Extra Slides

Could we create Z500-based probabilistic forecasts of temperature and precipitation?
For example, for a given forecast issuance, we could use the individual ensemble members to derive probabilities of above, near, or below normal temperature by using reforecast information about how often above, near, or below normal temperature is observed given an individual member's forecast of above, near, or below normal Z500.

For a given forecast:
\% above normal $\mathrm{T}=\%$ members above $\mathrm{Z} x$ ratio of observed above T to forecasted above Z +
\% members near $Z \times$ ratio of observed above T to forecasted near $Z+$
\% members below $Z \times$ ratio of observed above T to forecasted below Z
And so forth for \% near normal T and \% below normal T

I suppose this is a sort of calibration, but it may not provide much information given that temperature and precipitation probabilities only change subtly given the GEFSv12 forecast's for Z500.

