

NATIONAL WEATHER SERVICE

80

Improving NWS Subseasonal-to-Seasonal Forecast with Unified Forecast System: Highlights of Modeling and Analysis Results

Presenters: <u>Yan Xue</u>¹, Vijay Tallapragada ², Avichal Mehra ², Fanglin Yang ², Michael Barlage ², Yuejian Zhu ², Cristiana Stan ³, Jim Kinter ³, Jeff Whitaker ⁴, Wanqiu Wang ⁵, Deepthi Achuthavarier¹, Kevin Garrett¹

¹NOAA/OSTI ²NOAA/EMC ³George Mason University ⁴NOAA//PSL

7th CDPW, Logan, UT, 25-27 Oct 2022

Motivation

ÿ.

10

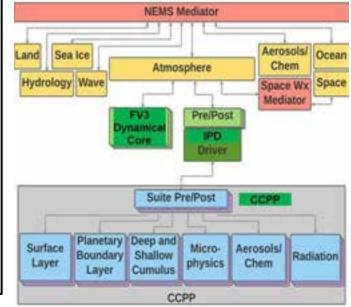
- The NWS issues global forecasts at three time scales – weather (GFS), subseasonal (GEFS) and seasonal (CFSv2)
- Since 2016, NWS has been in the process of upgrading its operational modeling suite using a new atmospheric dycore (FV3)
- NWS is using this opportunity to upgrade and unify its modeling capability across different scales using Unified Forecast System

A

80

망원

췚


Unified Forecast System

https://ufscommunity.org

The Unified Forecast System (UFS) is a community-based coupled Earth modeling system, designed to support the Weather Enterprise and also be the source system for NOAA's operations.

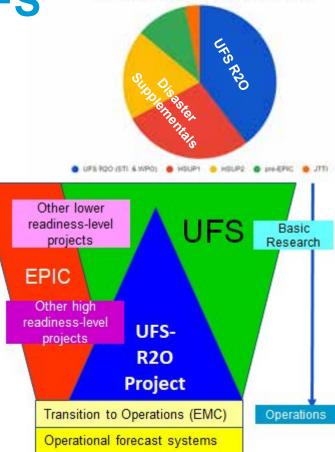
- Community components in UFS
 - Model infrastructure: ESMF, NUOPC, CMEPS
 - Atmosphere model: FV3 dycore, CCPP Physics
 - Ocean model: MOM6
 - Ice model: CICE6
 - Wave model: WW3
 - Aerosol model: GOCART
 - Land model: Noah-MP (currently)
 - Data assimilation: Joint Effort for Data assimilation Integration (JEDI)
- Each component has its own authoritative repository.

Building a Weather-Ready Nation // 3

NATIONAL WEATHER SERVICE

NOAA Investments in UFS

NOAA Investments in UFS


80

Unified Forecast System (UFS)

 NOAA programs that support the UFS: NGGPS, Weeks 3&4, HFIP, JTTI, EPIC, and Hurricane and Disaster Supplementals

UFS Research to Operations (UFS R2O) Project

- Three year project (FY20-23) with 5-year vision
- Developing the next-generation global and regional forecast systems for NOAA's operations by FY24
- NOAA's largest investment in the UFS: \$13M/yr, jointly supported by NOAA Operations (NWS) and Research (OAR)
- Community team (NOAA, NCAR, JCSDA, Universities)
- Website: <u>https://vlab.noaa.gov/web/ufs-r2o</u>

A

80

NWS Weather to Seasonal Forecast Systems: Current and Future Systems

Current Systems

GFSv16 (since March 2021) Weather scales, deterministic, no coupling with ocean/ice. FV3

GEFSv12 (since September 2020) Weather to subseasonal, ensemble, no coupling with ocean/ice. FV3

촲

Degiti

CFSv2 (since March 2011) **SF** Subseasonal to seasonal, ensemble, coupled with ocean & sea ice. Spectral Atm/MOM4 Ocean/SIS1 Sea ice

Future UFS Systems UFS System Configuration NUOPC Cap GFSv17 (FY 2024) Land NOAH/LM4 NUOPC Cap Ocean: **GEFSv13** (FY 2024) MOM6 Mediator: CMEPS **SFSv1** (FY 2027+) NUOPC Cap

Waves:

WaveWatchill

NUOPC Cap Atmosphere:

UFSATM

NUOPC Cap

Aerosols:

GOCART

NUOPC Cap

Sea ice: CICE5/6

A

×

Coupled Prototypes: Testing Framework

Strategy for testing

Compromise between computational resources and need for large enough sample for statistically meaningful metrics. Repeat for each prototype.

• April 2011 to March 2018

- Includes both El Niño and La Niña events
- Includes years of very low ice extent
- Initialized on the 1st and 15th of each month
- 7 years, 168 forecasts
- Deterministic 35-day free forecasts

Evaluation

- Fixed metrics: biases, anomaly correlations and RMSE, MJO skill
- Ad-hoc evaluations as needed; more detailed evaluations for later prototypes.
- Details on the prototypes' evaluation, see Lydia's presentation at the UFS S2S All-Hands Meeting <u>here</u>.

Coupled UFS Prototypes 1–8

औ	Prototype	Atmospheric Model C384 (~0.25 degree) horizontal resolution		Ocean Model Tripolar ~0.25	Wave Model Regular lat/lon		Mediator	
		Dynamical Model	Physics Settings & Driver	Land Model	degree horizontal resolution	0.5 degree grid	Tripolar ~0.25 degree horizontal resolution	
×>	P1	FV3	GFSv15.2,	Noah LSM	MOM6	N/A	CICE5	NEMS
	P2	64 layers,	IPD driver					
	P3.1	B.1 Non- Fractional grid						
	P4	(model top at	GFSv15.2,			<mark>WW3</mark>		
992	Р5	54km)	CCPP driver				CICE6 (Mushy TD not turned on)	CMEPS
	P6	FV3	<mark>GFSv16</mark>]			,	
∆	P7	127 layers, Fractional grid (model top at 80km)	Modified GFSv16	<mark>Noah-MP</mark> LSM			CICE6 (<mark>Mushy TD</mark> turned on)	
뎼뾚	P8		<mark>Further</mark> Modified GFSv16	Modified Noah-MP LSM				

(P8 includes one-way coupled aerosols)

Changes from Prototype 7 to Prototype 8

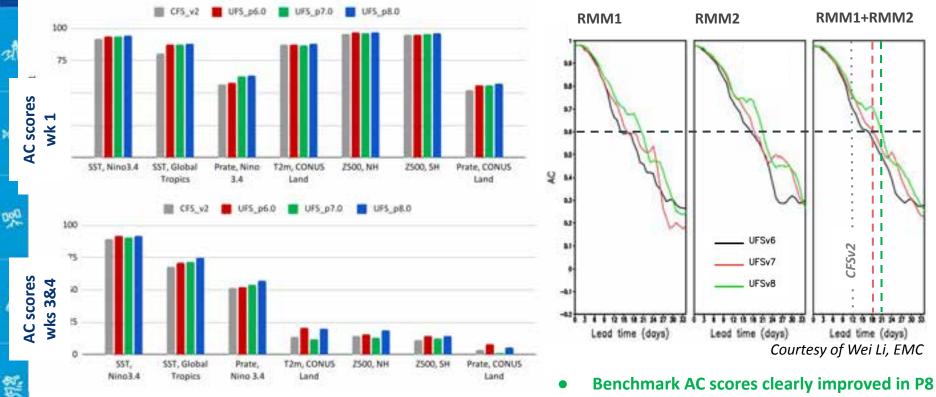
苎

A

**>

000

Δ


部

Prototype 7	Prototype 8:		
GFSv16 physics Noah-MP land surface scheme	 Physics updates to GFSv16, including: Thompson microphysics PBL and Convection updates Stochastic parameterization of tropical convection using cellular automata Noah-MP parameterization updates (snow, coupling, roughness length, sub-grid tiling) to correct P7 shortcomings Reverting gravity wave drag parameterization to P6 (uGWD.v0) to reduce winter high latitude warming; orographic gravity drag deactivated 		
Snow ICs from GEFSv12 . Soil ICs from spin up with Noah-MP using GDAS forcing	Snow and Soil ICs from spin up with updated Noah-MP using NASA GLDAS forcing (GSWP3/GDAS for Antarctica) and new land/lake mask		
	GOCART aerosol		

AC Scores for Wk1 and Wks 3-4

ä

AC scores for MJO

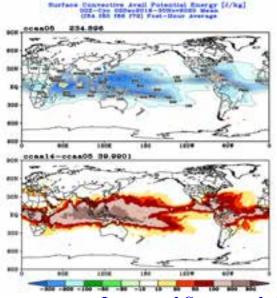
POC: Lydia Stefanova

• MJO skill is highest of all prototypes

-

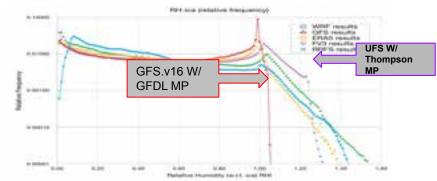
80

000

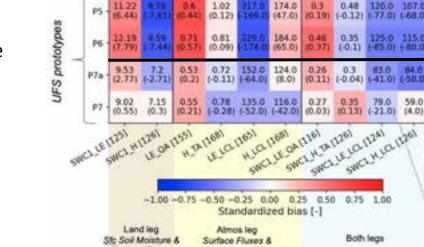

MRW/S2S: Atmosphere Physics Development

Physics update:

- Microphysics:
 - $\textbf{GFDL} \rightarrow \textbf{Thompson}$
- Convection:
 - sa-SAS, stochastic convective organization, optimization for CAPE
- PBL/turbulence:
 - $\textbf{K-EDMF} \rightarrow \textbf{sa-TKE-EDMF}$
- NSST is turned on
- Aerosol climatology:
 OPAC → MERRA2



Negative biases in Surface Convective Available Potential Energy (CAPE) were reduced in the Tropics


MRW/S2S: Land Model Development

- Transition from Noah LSM to Noah-MP LSM includes
 - sub-grid tiles for vegetation and bare soil;
 - separate canopy structure;
 - groundwater transfer and storage;
 - prognostic vegetation

Hierarchical testing approach includes

- land-only model to single column model to fully-coupled system;
- land-atmosphere coupling metrics to diagnose problem areas in the model process chain (figure right)

POC: Michael Barlage

Coupling metric: $A_B = \sigma(B) \cdot corr(A, B)$

RMSE

Land-Atmosphere Coupling Metrics (July 2012-2013)

Improvement in L-A coupling metrics (see description of the method <u>here</u>) from P6 to P7 (lower RMSE & bias in metrics across 171 global flux tower sites); atmosphere is responding more realistically to land anomalies (namely soil moisture). Courtesy of Paul Dirmeyer

Atmosphere

Ë

Ö

A

10

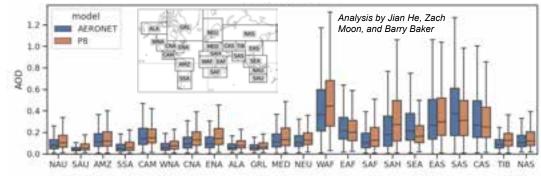
000

MRW/S2S: Atmospheric Composition Development

Motivation: Incorporating aerosols improves prediction of weather for weeks 3 and 4 in ECMWF model (*Benedetti and Vitart, 2018*)

Key goal: Improved representation of global aerosol distribution and inclusion of aerosol interactions with radiation on S2S timescales for GEFS v13 Major tasks:

- Global aerosol emissions processing system based on HEMCO
- Biomass burning emissions for S2S timescales
- Improved dust predictions
- Quality control, bias correction, and improved aerosol speciation and vertical profile representations for AOD data assimilation
- Assess meteorological impacts of aerosol-radiation interactions


Benefits:

- Improved aerosol process descriptions
- Realistic aerosol spatial distributions and temporal variability
- Realistic representation of aerosol radiative impacts on meteorology

Code base for aerosol processes: NASA's **GOCART** repository

POCs: Greg Frost, Ivanka Stajner

Regional comparisons of **P8 Weeks 1-4 UFS-Aerosols** AOD to **AERONET** AOD

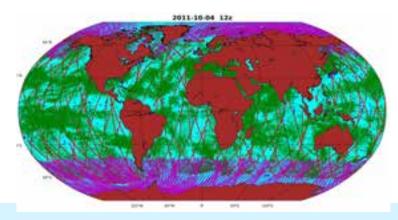
9

驇

Weakly Coupled Data Assimilation for Initialization of MRW/S2S Applications

Plans:

- Weakly coupled initialization for GFSv17 and GEFSv13 (~2024) with hybrid data assimilation methods.
- Weakly coupled reanalysis (1981-present) to support SFSv1 reforecasts.
- Transition to full JEDI-based data assimilation.


Current status:

- Weakly coupled 3DVAR system for testing: 1° UFS (FV3GFS+MOM6+CICE6) GSI for atm., JEDI-SOCA for ocean/sea ice
 - Upgrade to 1/4° ocean/sea ice, 1/2° atm
 - Upgrade to ensemble system

POC: Daryl Kleist and Sergey Frolov

Next Generation Global Ocean Data Assimilation System (NG-GODAS): Co-developed by JCSDA, EMC and CPC

- Interim ocean reanalysis: 1-deg, 40 year (1979 ~2020)
- Near-real-time production for CPC ocean monitoring

Δ

·Ph

-

10

al

10

맨

Planned GEFSv13 Implementation in FY24

GEFSv13 Ensemble Configuration:

- 6-way coupled system: C384L127 Atmospheric Model, ¼ degree MOM6 with 75 levels, unstructured grids for WW3, CICE6, Noah-MP and GOCART*
- Stochastic physics in atmos, ocean and land
- Perturbations in initial conditions
- 31-member* ensemble out to 35 days*
- Weakly coupled DA
- 3-year full resolution retrospectives prior to operational implementation in FY24
- *Possible to increase ensemble size
- *Extend forecast length to 45 days
- *Decision on coupling to aerosols will be done soon

POC: Vijay Tallapragada and Jeff Whitaker

Reanalysis (Replay) & Reforecast:

- CPC/OWP requires 30-year reforecast data (1991-2022) for calibration and validation
- Reforecast will be initialized by a replay of UFS to ERA5 atmos. and ORAS5 ocean, CPC sea ice analysis, Noah-MP spin up, snow DA
- Every Monday and Thursday, 35 days, 11 ensemble members
- Every day, 16 days, 6 members
- To ensure a smooth transition from reforecast to operation, a test dataset of reforecasts initialized by the replay will be run and used to assess its similarity with reforecasts initialized from a prototype pre-operational weakly coupled ensemble DA system.

1

10

000

UFS S2S Application Team (AT)

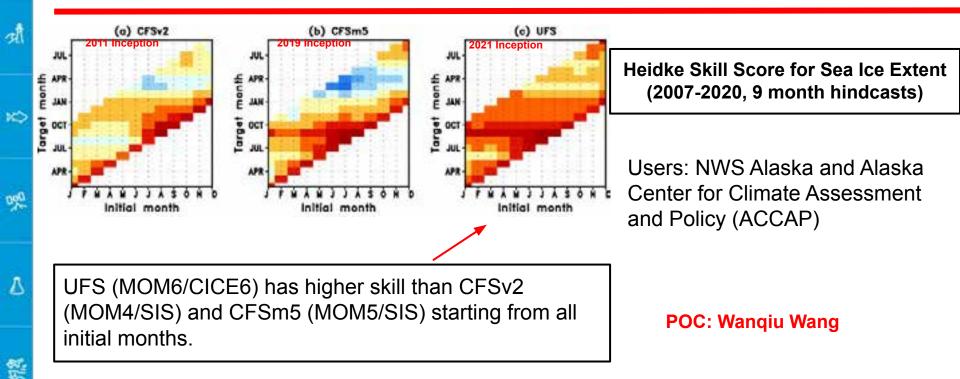
https://vlab.noaa.gov/web/ufs-r2o/ufs-s2s-applications-team

UFS S2S AT Co-Leads

Cristiana Stan, GMU; Fanglin Yang, NWS/EMC; Lucas Harris, OAR/GFDL; Wanqiu Wang, NWS/CPC

S2S AT - Goals

- Collect and prioritize forecast objectives working with NWS forecasters and model users in general
- Establish scientific goals for the model development and ensure that they meet the NWS forecast priorities
- Promote or conduct **model evaluations** and comparisons in order to stay abreast on model performance and deficiencies


UFS S2S AT All-Hands Monthly Meetings

- **Model Evaluation** on S2S Time Scales including prediction skill of the UFS and other models
- New diagnostics designed to advance the understanding of Earth system variability in the S2S timescale
- Identify projects that can be spun up to fill the gap in the model evaluation
- Meeting format will be informal presentations and discussions
- Sign-up link

開發

UFS Coupled model prototype data sets are available on the <u>AWS S3 Bucket</u> for community access. Community volunteers are invited for model evaluations, diagnosis and comparisons with other models.

Arctic Sea Ice Prediction Based UFS Prototype 5 (MOM6/CICE6) (Improving Experimental Sea Ice Prediction System at NCEP/CPC)

ž

Thanks!

Yan.Xue@noaa.gov

Building a Weather-Ready Nation // 17

A

80

哭

٨

췚

Global Forecast System (GFS v17) (0 – 16 days)

- Fully coupled UFS
- C768 (~13km), 127 levels
- ¼ degree ocean and sea ice
- Weakly coupled DA
- FY24: Implement GFS v17

Seasonal Forecast System (SFS v1) (0 – 12 months)

- Fully coupled UFS
- Weakly coupled DA
- Reanalysis and reforecast (1981-present)
- FY27: Implement SFS v1

Sub-Seasonal Forecast System (GEFS v13) (0 – 35 or 45 days)

- Fully coupled UFS
- C384 (~25km), 127 levels
- ¼ degree ocean and sea ice
- Weakly coupled DA
- 30 yr replay & reforecast (1993-2022)
- FY24: Implement GEFS v13

Coupled UFS Prototypes 1–8: Initial Conditions

	Initial Conditions Source						
Prototype	FV3			MOM6	CICE	WW3	
	Atm	Soil	Snow				
P1		CDAS1		CDAS1/MOM4	CDAS1/SIS1	n/a	
P2				<mark>CPC 3Dvar</mark>			
P3.1			•	Analysis	CPC-CSIS		
P4					Analysis	Generated with	
P5					•••	CFSv2 forcings	
P6							
Р7	GEFSv12 reanalysis	Spin up of Noah-MP with GDAS forcing	GEFSv12 reanalysis			Generated with GEFSv12 forcing	
P8		Spin up of updated Noah-MP with NASA GLDAS forcing					

(P8 aerosols initialized with interpolated MERRA-2 aerosol mixing ratio values. Uptake of dust and sea salt is dynamically predicted during model integration, while anthropogenic, biogenic, wildfire, and volcanic emissions are continuously prescribed.)

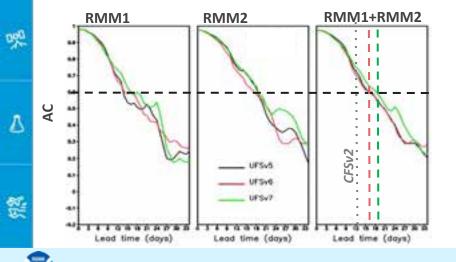
9

롎

ä

-

80


Prototype 7: Updated GFSv16 physics, Noah MP Land

Annually aggregated benchmark AC scores [%]. Green=Best overall (through P7), Red=Worst overall, 🗸 =Better than CFSv2, 🗙=Worse than CFSv2

	Week 1 AC	P6	P7
1	SST, Nino3.4	94.0 🗸	93.8 🖌
	SST, Global Tropics	87.6 🗸	87.2 🗸
	Prate, Nino 3.4	58.2 🗸	63.0 🖌
	T2m, CONUS Land		86.8 🗙
	Z500, NH	96.7 🖌	96.2 🖌
	Z500, SH	95.3 🗸	96.0 🖌
	Prate, CONUS Land	55.8 🗸	56.2 🗸

Week 2 AC	P6	P7
SST, Nino3.4	91.7 🖌	91.3 🗸
SST, Global Tropics	78.6 🗸	78.5 🗸
Prate, Nino 3.4	46.8 🖌	49.1 🗸
T2m, CONUS Land	47.9 🖌	46.1 🕽
Z500, NH	56.6 🖌	53.3 🗸
Z500, SH	50.2 🗸	54.3 🗸
Prate, CONUS Land	19.8 🗸	18.3 🗙

Weeks 3&4 AC	P6	P7
SST, Nino3.4	91.8 🗸	90.9 🗸
SST, Global Tropics	71.2 🗸	71.9 🖌
Prate, Nino 3.4	52.4 🗸	54.4 🗸
T2m, CONUS Land	20.7 🗸	12.1 🗙
Z500, NH	15.4 🗸	13.4 🗙
Z500, SH	14.6 🖌	12.5 🖌
Prate, CONUS Land	8.4 🗸	1.5 🗙

- Improvements: e.g. Nino 3.4 precipitation, first two weeks SH Z500, MJO
- **Degradations**: e.g. week 3&4 CONUS T2m and precipitation, all leads NH Z500
- The skill degradations likely related to increased land temperature biases.

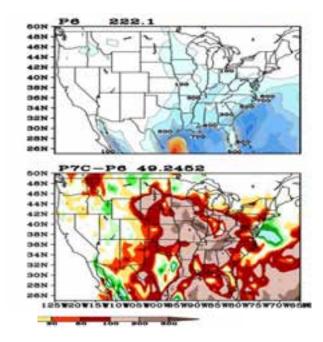
Suggested Timelines for GEFSv13

Timelines:

80

是

- Freeze/finalize replay reanalysis configuration using P8 as a baseline: September 30, 2022
- Finalize Ensemble Prototypes (EP3/EP4): Q1FY23
- Freeze/finalize reforecast configuration: Q1FY23
- Prepare workflows, secure resources: Q1FY23
- Final reforecast production: Q2FY23-Q1FY24
- Connect weakly coupled DA to GEFS Retrospectives: Q32023
- 2.5 year Retrospectives: Q4FY23-Q1FY24
- Stakeholder and Field Evaluation: Q2FY24
- Code hand-off to NCO: March 1, 2024 (planned)


MRW/S2S: Land Model Development

- Transition from Noah LSM to Noah-MP LSM includes
 - sub-grid tiles for vegetation and bare soil;
 - separate canopy structure;
 - groundwater transfer and storage;
 - prognostic vegetation

• Hierarchical testing approach includes

- land-only to single column model to fully-coupled system;
- land-atmosphere coupling metrics to diagnose problem areas in the model process chain

CAPE was improved in UFS P8 with spin-up land initial conditions and updated land physics

-

ž