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Vitart et al. 2012, 2017; Marriott et al., 2020

We rely on predictable states of the climate system to improve subseasonal 
forecasts, aka forecasts of opportunity
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Arcodia, Kirtman, Siqueira (2020)

Connection of tropical conditions to S2S North American West Coast precipitation
● MJO, ENSO largest sources of subseasonal and interannual predictability (Diaz et al., 2001; Lau and Waliser, 2011)

● Combined influence of MJO and ENSO lead to forecasts of opportunity
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Low Frequency Modulators of North American West Coast precipitation
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How does subseasonal predictability provided 
by the tropics vary on decadal timescales? 

Given that…
● The tropics can provide a source of mid-latitude subseasonal 

predictability for precipitation on the North American West 
Coast

● Pacific Decadal Oscillation modulates rainfall variability along 
the West Coast on low frequency timescales 
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Artificial Neural Network (ANN) 
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Leveraging Machine Learning
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We can quantify the confidence in the probability 
of the predicted output
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What did the neural network learn? 
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Linear model: inherently interpretable Neural Network: not inherently interpretable
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Credit: Tony Mamalakis

What did the neural network learn? 
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From Adebayo et al. (2020); Credit: Tony Mamalakis

eXplainable Artificial Intelligence (XAI) aims to explain how a Neural Network
makespredictions, i.e., what the decision strategy is.
XAI methods highlight which features in the input space are important for the
prediction

Explanation/  relevance  
Heatmap
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Integrated Gradients (attribution)
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Gradient
Relevance of feature i
for prediction n

Input

• Attribution refers to the relative contribution of a specific input feature to the 
output. [units output]

Mamalakis et al. 2022; Ancona et al. 2018
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Artificial Neural Network (ANN) 
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● CESM-2 Large Ensemble Dataset  (10 members) 
○ Daily data; 1850-1950; November - March 
○ Daily anomalies calculated via subtraction of the 

ensemble mean and detrending
■ Calculate daily climatology from the ensemble mean 
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Pre-processing Data
Background/ Motivation Methodology Results Discussion Conclusions



A   L   L  THE DATA 

● Training: Ensembles 0-7; Validation: Ensemble 8; Testing: Ensemble 9
● Next: 

○ Training: Ensembles 1-8; Validation: Ensemble 9; Testing: Ensemble 0
○ Training: Ensembles 2-9; Validation: Ensemble 0; Testing: Ensemble 1
○ Etc… 
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Neural Network Setup
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Input: 
Daily Tropical Precipitation 

Anomaly

Output: 
Week 3-4 Precipitation Anomaly

Goal: Predict sign of precipitation anomaly for averaged Week 3-4 in 5 regions 
along the North American West Coast

+

-

Artificial Neural Network (ANN) 
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[128 x 32]



Determine if accuracy >50% is due to random chance

◆ Trained
X Untrained
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Does the subseasonal predictability from the tropics vary on decadal timescales? 
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10-yr running window of prediction accuracy
Alaskan Week 3-4 precip

One testing ensemble member, 10 random seeds
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Does the subseasonal predictability from the tropics vary on decadal timescales? 



Quantify Confidence of the Neural Network’s Predictions 
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Quantify Confidence of the Neural Network’s Predictions 
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Percent Most Confident 
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Forecasts of Opportunity 
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Accuracy improves with confidence ⇒ more predictable time periods

Percent Most Confident 
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10-yr running window of prediction accuracy
Alaskan Week 3-4 precip
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Certain low frequency time periods have higher predictive skill and 
forecast confidence … leads to increased predictability

10-yr running window of prediction accuracy
Alaskan Week 3-4 precip
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Integrated Gradients XAI Heatmap for Contribution to 
Correct Prediction in Alaska
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Investigate Low Frequency Drivers of Predictability Variability
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Correct, 20% Most Confident
Negative Anomaly Prediction

Correct, 20% Most Confident
Positive Anomaly Prediction

Investigate Low Frequency Drivers of Predictability Variability
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Correct, 20% Most Confident
Negative Anomaly Prediction

Correct, 20% Most Confident
Positive Anomaly Prediction

SST patterns in ENSO- and PDO-like states lead to forecasts of opportunity for 
Week 3-4 precip

Investigate Low Frequency Drivers of Predictability Variability
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Investigate Low Frequency Drivers of Predictability Variability

Using a binomial statistics approach, we calculate the number of confident 
and correct predictions for positive and negative PDO phases 

68.56% Negative PDO Days 33.18% Negative PDO Days

31.09% Positive PDO Days 66.64% Positive PDO Days

Alaska Negative Precip Anomaly Alaska Positive Precip Anomaly
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Investigate Low Frequency Drivers of Predictability Variability

Using a binomial statistics approach, we calculate the number of confident 
and correct predictions for positive and negative PDO phases 

68.56% Negative PDO Days 33.18% Negative PDO Days

31.09% Positive PDO Days 66.64% Positive PDO Days

Alaska Negative Precip Anomaly Alaska Positive Precip Anomaly

● When ENSO and the PDO are in phase, the NN is both confident and accurate in its prediction
● Not a deterministic predictor, but highlights low frequency predictable states of the climate 

system  
○ The PDO amplifies ENSO teleconnections when they are in phase (Maher et al., 2022)
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NEXT STEPS

● Perform additional analyses on phase combinations of climate 
modes

● Test how this low frequency variability of subseasonal 
predictability will hold under future climates 
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SUMMARY

● Used an artificial neural network to quantify predictability of 
daily tropical precipitation as a predictor for Week 3-4 North 
American West Coast precipitation anomalies
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SUMMARY

● Used an artificial neural network to quantify predictability of 
daily tropical precipitation as a predictor for Week 3-4 North 
American West Coast precipitation anomalies

● Found there is decadal variability in subseasonal predictive skill 
○ Highlights forecasts of opportunity 
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10-yr running window of prediction accuracy
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● Certain ENSO and PDO-like states of tropical precip and global 
SST result in confident and correct predictions 
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SUMMARY

● Used an artificial neural network to quantify predictability of 
daily tropical precipitation as a predictor for Week 3-4 North 
American West Coast precipitation anomalies

● Found there is decadal variability in subseasonal predictive skill 
○ Highlights forecasts of opportunity 

● Certain ENSO and PDO-like states of tropical precip and global 
SST result in confident and correct predictions 
○ Not a deterministic predictor, but highlights subseasonal predictable states on 

low frequency timescales 

Marybeth Arcodia marcodia@rams.colostate.edu
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Correct 20% Most Confident Predictions

Alaska

Negative Anomaly Prediction

Positive Anomaly Prediction
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Negative Anomaly Prediction

Positive Anomaly Prediction

Incorrect 20% Most Confident Predictions

Negative Anomaly Prediction

Positive Anomaly Prediction
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Network uses ENSO-like state of precip to make correct and confident 
predictions, i.e. forecasts of opportunity
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● CESM-2 Large Ensemble Dataset 
○ 1850-1950 SMBB (smoothed biomass forcing), daily anomalies
○ Ensembles from each of the 4 initialized AMOC states 
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Data



Untrained models



Determine if accuracy >50% is due to random chance
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Correct 20% Most Confident Predictions

Pacific Northwest
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Pacific Northwest

Negative Anomaly Prediction
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SST Anomalies during FOOs

20% Most Confident
Correct Negative Anomaly Predictions
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SST Anomalies during FOOs

20% Most Confident
Correct Negative Anomaly Predictions

20% Least Confident
Correct Negative Anomaly Predictions

Difference

Network uses ENSO-like state to make correct and confident predictions and 
global SST patterns including the Indian Ocean, N Pacific, and N Atlantic
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SST Anomalies during FOOs

20% Most Confident
Correct Positive Anomaly Predictions

20% Least Confident
Correct Positive Anomaly Predictions

Difference
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This is my project


