NOAA's 47th Climate Diagnostics & Prediction Workshop

Understanding the Connection between Soil Moisture and Safe Water Access Using Earth Observations

Farah Nusrat¹, Joseph Goodwill¹, Jason Parent¹, Kristin Johnson¹, Ashraful Islam Khan², Md. Taufiqul Islam², Firdausi Qadri², Ali Shafqat Akanda¹

¹University of Rhode Island, ²International Centre for Diarrhoeal Disease Research, Bangladesh

Farah Nusrat

PhD Candidate

Department of Civil & Environmental Engineering

University of Rhode Island

Outline D Background

- Objective
- 🗋 Data
- Study Area
- Rainfall, Rainfall Extremes and Soil Moisture
- Land Surface Temperature (LST), LST Extremes and Soil Moisture
- Soil Moisture and Groundwater Relationship
- Waterborne Diseases and Soil Moisture Relationship

1 in **3** people globally do not have access to safe drinking water (UNICEF, WHO)

4 billion people face acute water scarcity

for at least cne month (wear (UNICEE)

Where Water Stress Will Be Highest by 2040

Projected ratio of water withdrawals to water supply (water stress level) in 2040

Over **2 billion** people live in water-stressed countries (WHO)

40% shortfall between forecast demand and available supply of water by **2030**

In developing countries, women and girls walk 3.5 miles/day, carrying 20 liters of water

733 Million people live in countries with high and critical level of water stress (SDG report-2022)

200 million hours/day spent by children and women

Unsafe Water Kills More People Than Disasters and Conflicts

At risk of waterborne diseases due to exposure to contaminated water

Water Availability other than Rainy season?

Highly seasonal areas? Data-scarce regions?

Objective

Can we use soil moisture as a proxy of water availability?

Data

Variables	Data Sources	Spatial Resolution	Temporal Coverage
Soil Moisture	NASA-USDA Enhanced SMAP Global Soil Moisture Data (Soil moisture profile)	10 km x 10 km	2015 to present
Land Surface Temperature (LST)	Moderate Resolution Imaging Spectroradiometer (MODIS) (Day time and Nighttime) MOD11A1.061	1 km x 1 km	2000 to present
Rainfall	Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)	5 km x 5 km	1981 to present
Liquid Water Equivalent thickness (LWE)	Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO)	50 km x 50 km	2002 to present
Acute Watery Diarrhea (AWD) Cases	District level surveillance of Directorate General of Health Services (DGHS) of Bangladesh	District Level (64)	2011-2019

People without Safe Drinking Water Access in 2020

Source: Our World in Data based WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation OurWorldInData.org/water-access • CC BY

Annual Mortality rate from diarrheal diseases per 100,000 in 2019

Note: To allow comparisons between countries and over time this metric is age-standardized.

Hydrological Setting of Bangladesh

Hydrological Regions of Bangladesh

Bangladesh is divided into 7

hydrological regions

❑ Based on principal river system

and environmental characteristics

Better planning and management

of water resources

Hydrological Regions of Bangladesh

Characteristics of Hydrological Regions of Bangladesh

Rainfall & Soil Moisture

Rainfall's impact on Soil Moisture

	Correlation of Soil Moisture Anomaly &								
Region	Rainfall Anomaly								
	Winter	Spring	Monsoon	PostMonsoon					
EH	0.48*	0.51*	0.05	0.61*					
SE	0.25	0.31	0.17	0.6*					
SC	0.46	0.37	-0.15	0.86***					
SW	0.15	0.42	-0.25	0.69**					
NW	0.06	-0.27	0.2	0.66**					
NC	0.38	0.19	0.14	0.7**					
NE	0.12	-0.24	0.25	0.8***					

- Higher rainfall is associated with higher Soil Moisture
- In Winter and Spring, Rainfall shows higher correlation with soil moisture than Monsoon
- Very high correlation observed in all regions which are statistically significant in Post monsoon

Rainfall Extreme Indices

Indices	Name	Definition	Unit
Rx1day	Maximum 1-day precipitation	Monthly Maximum 1-day Precipitation	mm
Rx5day	Maximum consecutive 5-day precipitation	Monthly Maximum 5-day Consecutive Precipitation	mm
R10mm	Days with heavy	Number of days in a month when Precipitation ≥	Days
	precipitation	10mm	
R20mm	Days with very heavy	Number of days in a month when Precipitation ≥	Days
	Precipitation	20mm	
R50mm	Days with extreme	Number of days in a month when Precipitation ≥	Days
	precipitation	50mm	
CWD	Consecutive Wet Days	Maximum number of consecutive days in a month	Days
	(maximum length of wet spell)	with Precipitation \geq 1mm	
CDD	Consecutive Dry Days (maximum length of dry spell)	Maximum number of consecutive days in a month with Precipitation < 1mm	Days

Rainfall Extremes Indices' Impact on Soil Moisture

		Winter						
Region	Rx1day_Anomaly	Rx5day_Anomaly	R10mm_Anomaly	R20mm_Anomaly	R50mm_Anomaly	CDD_Anomaly	CWD_Anomaly	
EH	0.48*	0.54*	0.36	0.39	nan	0.09	0.66**	
SE	0.31	0.34	0.17	0.15	nan	0.26	0.19	
SC	0.45	0.72***	0.27	0	nan	0.07	0.53*	
sw	0.36	0.49*	0.19	-0.02	nan	-0.21	0.47	
NW	-0.01	0.12	nan	nan	nan	0.27	0.02	
NC	0.4	0.51*	0.18	-0.03	nan	-0.2	0.13	
NE	-0.06	0.31	-0.18	-0.11	nan	-0.12	0.39	

			Spring									
Region	Rx1day_Anomaly	Rx5day_Anomaly	R10mm_Anomaly	R20mm_Anomaly	R50mm_Anomaly	CDD_Anomaly	CWD_Anomaly					
EH	0.46*	0.54**	0.43	0.42	0.49*	-0.27	0.22					
SE	0.34	0.2	0.25	0.01	0.24	-0.16	0.29					
SC	-0.13	0.03	0.07	0.29	-0.23	-0.27	0.43					
SW	0.37	0.22	0.27	0.19	0.21	-0.37	0.16					
NW	0.05	0.16	-0.47*	0.4	-0.37	0.15	0.11					
NC	0.26	0.02	0.07	0.25	0.23	-0.07	-0.14					
NE	0.24	0.22	-0.15	-0.31	-0.38	0.28	0.19					

Winter

 RX5 shows higher impact than monthly rainfall and other rainfall extremes on SM

Spring

RX1 explains SM condition better than other rainfall extremes

*nan occurs as values have no variance

Rainfall Extremes Indices' Impact on Soil Moisture

		Monsoon										
Region	Rx1day_Anomaly	Rx5day_Anomaly	R10mm_Anomaly	R20mm_Anomaly	R50mm_Anomaly	CDD_Anomaly	CWD_Anomaly					
EH	-0.06	0	0.21	0.03	-0.14	-0.35	-0.01					
SE	0.06	0.04	0.16	0.24	0.06	-0.29	0.13					
SC	-0.2	-0.23	0.1	-0.24	-0.32	-0.33	0.23					
sw	-0.35	-0.19	-0.07	-0.4*	-0.2	-0.04	0.02					
NW	0.04	-0.08	0.28	0.04	0.15	-0.51**	0.21					
NC	0.03	0.04	0	0.21	-0.02	-0.4*	0.16					
NE	0.04	0.12	0	0.08	0.13	-0.3	0.04					

		PostMonsoon										
Region	R	1day_Anomaly	Rx5day_Anomaly	R10mm_Anomaly	R20mm_Anomaly	R50mm_Anomaly	CDD_Anomaly	CWD_Anomaly				
EH		0.52	0.49	0.55*	0.53	0.45	-0.4	0.49				
SE		0.43	0.51	0.36	0.76**	0.34	-0.22	0.58*				
SC		0.69**	0.64**	0.64**	0.67**	0.56*	-0.13	0.56*				
SW		0.63**	0.44	0.85***	0.29	0.14	-0.53	0.34				
NW		0.69**	0.78***	0.34	0.47	0.25	-0.41	0.64**				
NC		0.63**	0.7**	0.78***	0.66**	0.21	0.05	0.62*				
NE		0.65**	0.77***	0.59*	0.67**	0.42	-0.32	0.3				

Monsoon

- Neither monthly rainfall nor rainfall extremes show strong impact on soil moisture increase.
- Only CDD shows higher negative impact on soil moisture in monsoon

Post Monsoon

- Statistically significant very high positive correlations observed
- Extremely heavy rainfall (Rx50) has less impact on SM increase than other extremes
- CWD has more positive impact on SM

LST & Soil Moisture

LST's impact on Soil Moisture

	Correlation	ure Anomal	y a	& Land Surface					
Region	Temperature (LST) Anomaly								
	Winter	Spr	ng	Monsoor		PostMonsoon			
EH	-0.13	-0.	36	-0.39*		0.09			
SE	-0.15	-0.	36	0.00		-0.36			
SC	-0.16	-0.	01	-0.11		-0.43			
SW	-0.07	-0.	32	-0.33		-0.49			
NW	-0.26	-0.5	3**	-0.31		-0.45			
NC	-0.21	-0.	14	-0.07		-0.48			
NE	-0.17	-0.	12	0.18		-0.29			

- ☐ Higher LST is associated with lower Soil Moisture
- Spring & Post Monsoon have high temperature
- High temperature causes higher Evapotranspiration and that lower the soil moisture
- Spring and Post Monsoon show higher correlation than other seasons

LST Extreme Indices

Indices	Name	Definition	Unit
TXx	Maximum daytime	Monthly maximum value of	°C
	temperature	daily daytime temperature	
TXn	Minimum day time	Monthly minimum value of	°C
	temperature	daily daytime temperature	
TNx	Maximum nighttime	Monthly maximum value of	°C
	temperature	daily nighttime temperature	
TNn	Minimum nighttime	Monthly minimum value of	°C
	temperature	daily nighttime temperature	
T_Span <21	Cold Spell	Maximum number of consecutive days in a month with	Days
		nighttime temperature < 21°C	
	Cooler Nights	Number of days in a month when nighttime	Days
	C .	temperature < 21°C	
T_Span >31	Warm Spell	Maximum number of consecutive days in a month with	Days
		daytime temperature > 31°C	-
T>31	Warmer Days	Number of days in a month when daytime temperature	Days
		> 31°C	

	Winter									
Region	Max Day	Min Day	Max Night	Min Night	Warm	Warm	Cold	Cold		
-	Temp	Temp	Temp	Temp	Spell	Days	Spell	Days		
EH	-0.16	-0.08	-0.07	0.11	-0.16	-0.16	-0.01	0.11		
SE	0.05	-0.08	0.16	-0.51*	nan	nan	-0.43	-0.27		
SC	-0.08	-0.24	0.06	-0.16	-0.27	-0.27	-0.1	-0.18		
SW	-0.15	0.01	-0.1	0.15	nan	nan	0.09	-0.08		
NW	-0.55*	-0.35	-0.36	-0.06	nan	nan	0.11	0.1		
NC	-0.2	-0.38	-0.16	-0.16	nan	nan	0	0.23		
NE	-0.14	-0.15	0.2	0.31	nan	nan	0.14	0.31		

Daytime temperature shows negative impact on soil moisture in Winter

	Spring									
Region	Max Day	Min Day	Max Night	Min Night	Warm	Warm	Cold	Cold		
	Temp	Temp	Temp	Тетр	Spell	Days	Spell	Days		
EH	-0.26	-0.05	-0.5*	-0.57**	-0.01	-0.23	0.33	0.38		
SE	-0.15	-0.44	0.22	-0.08	0.01	-0.08	0.34	0.4		
SC	-0.21	-0.26	-0.21	-0.17	-0.02	0.1	-0.05	0.24		
SW	-0.02	-0.12	-0.18	-0.44	-0.26	-0.22	0.23	0.33		
NW	-0.71***	0.43	-0.13	-0.44	-0.35	-0.36	0.62**	0.22		
NC	-0.32	-0.15	-0.03	-0.04	-0.01	-0.23	-0.09	0.15		
NE	-0.52*	-0.08	0.16	-0.2	-0.42	-0.29	-0.22	-0.08		

Max day temp shows moderately high negative

impact on soil moisture in Spring

- Warm days (T>31°C) and warm spell have negative impact on soil moisture in Spring
- Cold spell (days when T<21°C) in spring has positive impact on soil moisture, longer cold spell is associated

*nan occurs as values have no variance

	Monsoon									
Region	Max Day	Min Day	Max Night	Min Night	Warm	Warm	Cold	Cold		
	Temp	Temp	Temp	Тетр	Spell	Days	Spell	Days		
EH	-0.2	-0.05	-0.26	0.13	-0.02	-0.06	-0.14	-0.58***		
SE	0.05	0.13	0.19	0.37	0.04	-0.13	-0.16	-0.66***		
SC	-0.39*	0.02	0.11	0.06	-0.29	-0.36	-0.1	-0.48**		
SW	-0.25	-0.09	-0.13	0.04	-0.1	-0.26	0.04	0.05		
NW	-0.21	0.05	0.45**	0.02	-0.1	-0.17	0.22	0.08		
NC	-0.09	0.42*	0.15	0.17	-0.05	-0.17	0.1	-0.03		
NE	-0.08	0.03	0.48**	-0.03	-0.13	-0.05	nan	0.17		

Maximum daytime Temperature shows negative

association with soil moisture increase

- Maximum Nighttime Temperature shows positive association with soil moisture increase
- Cold days (T<21°C) in southern part shows negative impact in monsoon</p>

	PostMonsoon												
Region	Max Day Temp	Min Day Temp	Max Night Temp	Min Night Temp	Warm Spell	Warm Days	Cold Spell	Cold Days					
EH	0.56*	-0.09	0.36	-0.2	nan	nan	0.1	-0.28					
SE	-0.22	0.22	0.42	0.41	-0.37	-0.37	0.04	-0.86***					
SC	-0.66**	0.36	0.2	0	-0.17	-0.17	-0.03	-0.72**					
SW	-0.79***	-0.04	0.15	0.46	-0.45	-0.44	-0.1	-0.71**					
NW	-0.45	-0.69**	0.25	0.02	-0.45	-0.45	-0.55*	-0.42					
NC	-0.36	-0.31	0.46	0.27	-0.33	-0.32	-0.71**	-0.38					
NE	0.37	-0.24	0.57*	0.12	-0.17	-0.17	-0.64**	-0.69**					

Maximum day Temperature shows moderately high negative impact on soil moisture

- Higher the Warm Spell (days when T>31°C), lower the soil moisture
- ❑ Warmer days (T>31°C) have negative on soil moisture
- Cold spell (days when T<21°C) has negative impact on soil moisture, shorter cold spell is

associated with more soil moisture

*nan occurs as values have no variance

Impact of Extreme Indices on Soil Moisture

va ria bl es	Winter	Spring	Monsoon	Post Monsoon
Ra inf all	RX1day, RX5 day, CWD	RX1day	CDD	RX1day, RX5 day, R10mm, R20mm, R50mm, CWD, CDD
Te m pe rat ur	Min day temp (TXn)	Max day temp (TXx), Warm days (T>31°C), Cold spell (days when T<21°C)	Maximum Nighttime Temperature (TNx), Cold days (T<21°C)	Maximum day Temperature (TXx), Maximum Nighttime Temperature (TNx), Warm Spell (days when T>31°C), Warmer days (T>31°C), Cold spell (days when T<21°C)

е

Soil Moisture and Groundwater Relationship

Region	Correlation of Soil Moisture Anomaly & Liquid Water Thickness (groundwater) Anomaly										
	Winter	Spring	Monsoon	PostMonsoon							
EH	0.09	0.5*	-0.07	0.29							
SE	0.04	0.37	-0.18	0.57*							
SC	0.21	-0.16	-0.11	0.05							
SW	0.71***	-0.13	-0.09	0.48							
NW	0.61**	0.12	0.04	0.24							
NC	0.13	0.16	0.1	0.67**							
NE	0.15	0.38	-0.01	0.44							

Pogi	on	Groundwater & Soil						
regi	UII	Moisture Correlation						
EF	1	0.93***						
SE		0.88***						
SC		0.9***						
S۷	V	0.88***						
NV	V	0.8***						
NC		0.81***						
NE		0.77***						

- For timeseries, strong positive association between soil moisture and groundwater
- □ For seasonal anomaly, overall positive correlation with some exceptions

Water Crisis is a Health Crisis

- Around **771 million** people without **safe water** access **Globally**
- □ Nearly 1 million people die/year from water, sanitation and hygiene- (WASH) related diseases

200 to ≥500 deaths per 100,000

Under-5 Diarrhea Mortality Rate per 100,000 in 2016

Troeger et al., 2018

Waterborne Diseases

- 2,195 children die due to diarrhea everyday globally
- Diarrhea is 3 or more episodes of loose stool in 24 hours
- Acute Watery Diarrhea (AWD) is a diarrheal disease with an increase of water content, volume, or frequency of stool

Rotavirus

none

Salmonella Image Source: Wikipedia

E. Coli

Water and Waterborne Diseases Relationship

Total disease cases during a given time period

Prevalence =

X 100,000

Population during the same time period

	Correlation with AWD Anomaly											
Region			Wi	nter		Spring						
		5M	GW	Rx1	TXx	SM		GW	Rx	L	ТХх	
EH	0.0	9	0.24	-0.15	0.14	-0.12	-0.	47**	-0.19		0.39**	
SE	0.2		0.02	-0.32	0.26	0.08	-0.	65***	-0.63	**	0.24	
SC	-0.	21	-0.2	0.26	0.1	0.26	-0.	65***	-0.04		0.17	
SW	-0.	56**	0.04	-0.33*	0.17	-0.32	-0.	59***	-0.41	**	0.49***	
NW	-0.	04	0.14	-0.15	0.08	-0.68***	-0.	59***	-0.24		0.5***	
NC	-0.	49*	0.12	0.12	0.06	-0.48*	-0.	41**	-0.5*	**	0.31	
NE	-0.	25	-0.34	[•] 0.16	0.09	-0.3	-0.	53***	-0.24		0.52***	

		Correlation with AWD Anomaly											
Region			Mo	soon	PostMonsoon								
		SM	GW		Rx1	TXx	SM			GW	R	x1	ТХх
EH	-C	.08	0.04		0.04	-0.13	0.44	-	0.	28	0.05		0.25
SE	0.	03	-0.2		0.1	-0.04	-0.06	-	0.	39	-0.1		-0.21
SC	-C	.24	-0.1		0.36**	0.12	-0.51	0).2	4	-0.3	4	0.65***
SW	-C	.18	-0.08		0	0.19	-0.12	C).2		-0.2	7	-0.21
NW	0.	1	-0.12		0.35**	0.17	0.12	0).3	7	-0.2	5	0.03
NC	-C	.25	-0.08		-0.18	-0.23	-0.38	_	0.	25	0.17		-0.35
NE	-C	.23	-0.21		-0.19	0.08	-0.28	-	0.	16	-0.2	7	0.51**

Applications

Eos

OUT SPECIAL REPORTS TOPICS - PROJECTS - NEWSLETTER SUBMIT TO DOS

Satellites and Cell Phones Form a Cholera Early-Warning System

URI News

External Relations and Communications

A new initiative combines satellite data with ground observations to assess and predict the risk of cholera outbreaks in Bangladesh's vulnerable populations.

By A. S. Akanda, S. Aziz, A. Jutla, A. Huq, M. Alam, G. U. Ahsan, and R. R. Colwell

27 March 2018

From satellite to smartphone, app warns public of unsafe water

App creates early-warning risk maps based on environmental conditions

Q,

Findings

□ Soil Moisture can be used as a proxy of water availability

□ This finding can help to build resilience public health vulnerability

References

Slide 1: https://www.india.com/news/world/women-girls-spend-200-million-hours-collecting-water-unicef-1445291/ http://washfair.blogspot.com/2016/09/women-girls-spend-200-million-hours.html https://www.concernusa.org/story/water-is-a-womens-issue/ https://www.concernusa.org/story/water-scarcity-solutions-that-work/ Slide 3: https://www.who.int/news-room/fact-sheets/detail/drinking-water https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who https://www.wateroam.com/social-awareness/the-water-crisis-Indonesia https://www.statista.com/chart/26140/water-stress-projections-global/ Slide 4: https://www.waterinno.com/ https://cdn.who.int/media/images/default-source/infographics/cholera/cholerabillion-infographiclarge.jpg?sfvrsn=1c608a0d 1 https://earth.org/causes-and-effects-of-water-shortage/ https://www.concernusa.org/story/water-scarcity-solutions-that-work/ https://www.worldvision.org/clean-water-news-stories/carrying-water-pain-neck Slide 5: https://www.nytimes.com/2015/08/11/health/catching-up-with-a-childhood-killer-diarrhea.html https://www.worldvision.org/about-us/media-center/recent-rains-lead-spike-child-cholera-cases-across-horn-africa-aid-agency-warns Slide 9: https://ourworldindata.org/water-access#access-to-safe-drinking-water Slide 10: https://ourworldindata.org/diarrheal-diseases Slide 11: https://en.wikipedia.org/wiki/Ganges Basin Slide 23: https://archive.dhakatribune.com/uncategorized/2017/11/10/bangladesh-top-10-global-climate-risk-index Slide 24: https://www.devdiscourse.com/article/science-environment/2077818-millions-stranded-as-floods-ravage-parts-of-bangladesh-india-more-rain-forecast Slide 28: https://water.org/our-impact/water-crisis/health-crisis/ Troeger, C., Blacker, B. F., Khalil, I. A., Rao, P. C., Cao, S., Zimsen, S. R., ... & Reiner Jr, R. C. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18(11), 1211-1228. Slide 29: https://www.cdc.gov/healthywater/pdf/global/programs/globaldiarrhea508c.pdf Guerrant RL, Van Gilder T, Steiner TS, et al.; Infectious Diseases Society of America. Practice guidelines for the management of infectious diarrhea. Clin Infect Dis. 2001:32(3):331-351. Slide 30: https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section2.html Slide 32: https://eos.org/science-updates/satellites-and-cell-phones-form-a-cholera-early-warning-system https://www.uri.edu/news/2021/07/from-satellite-to-smartphone-app-warns-public-of-unsafe-water/

Slide 33: https://www.drought.gov/events/2021-national-soil-moisture-workshop