The Pacific Decadal Oscillation Revisited

Michael Alexander

NOAA/ESRL • PHYSICAL SCIENCES DIVISION

Matt Newman, Toby Ault, Kim Cobb, Clara Deser, Manu Di Lorenzo, Nate Mantua, Art Miller, Shoshiro Minobe, Hisashi Nakamura, Niklas Schneider, Dan Vimont, Adam Phillips, Jamie Scott, and Cathy Smith

(paper submitted to J Climate)

BAMS article to follow

CD&P Workshop
28 October 2015
Denver, Colorado
PDO

- Associated with climate, ecosystem and hydrologic fluctuations
- Develop a process understanding - key to prediction and applications

- Leading pattern of SST variability in the North Pacific (> 20°N)
- Defined from North Pacific SSTs but global in Nature

Newman, Alexander et al., 2015; J. Climate, submit.
The PDO a multi-process Phenomena?

Response to ENSO/Tropical SSTs: “Atmospheric Bridge”

JFM ENSO Composite

Model design: SSTS specified in the tropical Pacific + MLM w Ekman Transport Explains ~30-40% of North Pacific anomalies on decadal time scales

Alexander and Scott 2008, J. Climate; Alexander, 2010, AGU Monograph Chapter
Random Forcing Aleutian Low Variability

- Ocean is a simple slab, no currents thus no ENSO or ocean gyres
- Leading pattern => changes in strength of the Aleutian Low
- Changes in surface fluxes forces ocean
- Ocean integrates flux forcing creates SST anomalies that resemble the PDO

Alexander, 2010; AGU Monograph Chapter
Midlatitude Ocean Processes: I

- **SST Reemergence**
 - Winter SST Anomalies recur
 - Acts to “lengthen” ENSO & random atmospheric forcing

Newman, Alexander et al., 2015; J. Climate, submitted
- Wind stress curl in the central/eastern Pacific generated Ocean Rossby waves
 - Impacts SST near Japan, along the Kuroshio-Oyashio Extension (KOE) front
Kuroshio-Oyashio frontal variability

- SST anomalies and the atmospheric response to the frontal anomalies in an atmospheric model

300 hPa height (m) response

Smirnov, Newman, Alexander et al., 2015; J. Climate
Building the PDO

- Empirical Model (LIM)
- Leading Pacific dynamical modes
 - Not EOFs,
 - not orthogonal
- Time series show projection of each mode onto the PDO

Newman, Alexander et al., 2015; J Climate, submitted
Epoch Differences in SST °C

Newman, Alexander et al., 2015; J. Climate, submitted
Summary of Processes

- Processes:
 - Atmospheric Bridge (ENSO)
 - Random forcing
 - Reemergence
 - Ocean Rossby waves & ocean fronts
 - Atmospheric response to KOE SST anomalies?

Newman, Alexander et al., 2015; J. Climate, submitted
Climate Model Simulations and Paleoclimatic Reconstructions of the PDO

- The observed PDO spectra can be simulated by the LIM
- Most CMIP5 models:
 - Have a recognizable PDO pattern
 - Overestimate variability in the KOE region
 - Underestimate the connection to the leading EOF (ENSO) in the tropical Pacific
 - Overestimate the connection to the second EOF (ENSO) in the tropical Pacific
- Paleo reconstructions of the PDO differ widely prior to the recent period that they were trained on

Newman, Alexander et al., 2015; J. Climate, submitted
Climate Division Correlations with the PDO; ENSO and the NPI (Aleutian Low SLP Index)

Not Independent!
Nov-Mar Temperature °C ENSO Composites stratified by High and Low PDO values
PDO/ENSO spectra

Gray shading: 1000 1000-yr LIM (multivariate AR1) realizations

CMIP5 spectra lies within confidence interval (a-c)

Newman, Alexander et al., 2015; J. Climate, submitted
Pacific Ocean currents and variability

Kuroshio-Oyashio Extension (KOE) system is a key component of the North Pacific ocean-atmosphere system.

Shifts in the subarctic SST front are associated with longer time scales (westward propagating Rossby waves).
Removing tropically-forced portion of the PDO yields “internal” North Pacific SST mode

Multivariate AR1 model (LIM):

\[\frac{dx}{dt} = Bx + F_s \]

Determined from observations, where \(x\) represents seasonal mean anomalies (1958-2008) of:
- **Tropical Pacific** [SST, thermocline depth]
- **North Pacific** [SST, mixed layer temp (30-100m)]
Taylor diagram compares PDO determined from HadISST, 1901-2004, to
- CMIP3: green
- CMIP5: red
- Black dots: 50-yr Monte Carlo subsampling
- Triangles: other data sets

Key result:
- Models reproduce a PDO EOF but none reproduce PDO well
Fitting (simpler) AR1 model to observations and CMIP5 models, 1901-2004

Key results:
- Most models reproduce PDO EOF
- Almost all models underestimate tropical forcing of PDO (a)
- Most models (slightly) overestimate r

\[\text{PDO}(n) = r \text{PDO}(n-1) + a \text{PC1}_{\text{Tropics}}(n) + b \text{PC2}_{\text{Tropics}}(n) + e \]
PDO and ENSO “climate signals” are not independent

Nov-Mar precipitation correlated with PDO

Nov-Mar precipitation correlated with ENSO

(NOAA/ESRL PSD and CIRES–CDC)
PDO simulated in NCAR models

- Most climate models overestimate western North Pacific variability and underestimate connection to tropics.

- Recent NCAR models fairly good – much improved over previous CCSM models.