The Evaporative Demand Drought Index (EDDI) and the California Drought

Mike Hobbins - NOAA-PSD/CIRES, Boulder, CO

and

Daniel McEvoy, Justin Huntington - Desert Research Institute, Reno, NV

mike.hobbins@noaa.gov
303-497-3092

40th Annual Climate Diagnostics and Prediction Workshop, Denver, CO, October 26-29, 2015
Evaporative demand (E_0) concept

ET is supply of surface moisture to atmosphere

E_0 is atmospheric demand for ET

$ET = \text{actual evapotranspiration}$

$E_0 = \text{evaporative demand}$

$ET_0 = \text{reference evapotranspiration}$

E_0 from reanalysis of ASCE Standardized Reference ET:

$$ET_0 = \frac{0.408\Lambda}{\Lambda + \gamma(1 + C_d U_2)} \left(R_n + L_a - G \right) + \frac{\gamma C_n}{T} U_2 \frac{(e_{sx} - e_a)}{10^3}$$

Radiative forcing

Adveective forcing

Drivers from NLDAS
- temperature at surface (2 m)
- specific humidity at surface
- downward SW at surface
- 10-m wind speed at 10 m

Reanalysis of E_0
- daily
- Jan 1, 1979 – present
- ~12-km
- CONUS-wide

Mean annual E_0 (from ET_0), 1981-2010 (mm).
E_0/ET interactions in drought
Surface energy budget

\[R_n + L_n - G = Q_n = H + ET \]
E_0/ET interactions in drought

Sustained drought - water limited

Flash drought - energy driven

Take home:

in both drought types, E_0 increases.

E_0 up due to energy balance favoring H over ET.

ET and E_0 vary in a parallel direction:

• ET and E_0 up due to increases in advection or energy availability,
• moisture may not be limiting.

ET and E_0 vary in complementary directions:

• ET down due to moisture limitations,
• E_0 up due to energy balance favoring H over ET.

(Hobbins et al., 2004)
E_0, ET and the water balance
Russian River, CA

E_0 / ET complementarity observed in basin.

r^2 of basinwide water balance components

Monthly (deseasonalized)

<table>
<thead>
<tr>
<th></th>
<th>E_0</th>
<th>ET</th>
<th>$Prcp$</th>
<th>$Runoff$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Prcp$</td>
<td>0.172</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Runoff$</td>
<td>0.162</td>
<td>0.020</td>
<td>0.619</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.339</td>
<td>0.041</td>
<td>0.241</td>
<td>0.489</td>
</tr>
</tbody>
</table>

Annual

<table>
<thead>
<tr>
<th></th>
<th>E_0</th>
<th>ET</th>
<th>$Prcp$</th>
<th>$Runoff$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>0.408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Prcp$</td>
<td>0.361</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Runoff$</td>
<td>0.487</td>
<td>0.028</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.826</td>
<td>0.380</td>
<td>0.635</td>
<td>0.652</td>
</tr>
</tbody>
</table>

- r^2 for E_0-SM higher (83%) than any other annual variable pairs.
- Monthly E_0 correlates better to SM than does ET (34% vs. 4%).
- At both time scales, ET_0 more strongly linked than ET to hydrologic cycle.
EDDI defined
Standardized anomaly (Z-score)

$$ EDDI_t = \frac{ET_0_t - \bar{ET}_0}{\sigma_{ET_0}} $$

- t is period during which anomaly is observed.
- e.g., t for 2-month EDDI on Jan 31, 2015 starts on Dec 1, 2014.

Daily E_0 summed across period t

30-year mean E_0 across period t

30-year stddev of E_0 across period t

0

wetter than normal
EDDI < 0

drier than normal
EDDI > 0

ED0: 0.524, > 70%ile
ED1: 0.841, > 80%ile
ED2: 1.282, > 90%ile
ED3: 1.645, > 95%ile
ED4: 2.054, > 98%ile
EDDI as multi-scalar drought estimator

- Signals of different drying dynamics evident at different time-scales.
- EDDI signal precedes USDM at many time-scales.

USDM (grey) and EDDI (red) across Apalachicola River basin at Chattahoochee, FL.
Drought onset
June 28, 2011

Texas drought still evident

6-month EDDI

USDM = United States Drought Monitor
Drought intensification attribution
February-July 2014

E_0 signal of drought intensification:

$E_0 = f(T, R_d, q, U_2)$, so

$\Delta E_0 = \frac{\partial E_0}{\partial T} \Delta T + \frac{\partial E_0}{\partial R_d} \Delta R_d$

anomalies observed in E_0 reanalysis

Drought intensification of E_0 and its drivers:

- first, below-normal q (while T falling).
- then, increasing T and, to a lesser degree, R_d.
- U_2 plays little role.

Changes in 12-week E_0 (mm)

E_0 signal in Sacramento River basin

CA-mean USDM and EDDI

12-week anomalies (Δ) of E_0 and its drivers

- E_0 signal of drought intensification:
- first, below-normal q (while T falling).
- then, increasing T and, to a lesser degree, R_d.
- U_2 plays little role.
Drought at its most intense (so far)
late July, 2014
In-drought wetting attribution
November-December 2014

1-week series of ΔE₀ and each drivers’ contributions (mm)

E₀ declines during Prcp:
• +ve Δq depresses E₀ and EDDI
• despite +ve ΔT
Drought current conditions
end of WY 2015 (Sept 30)
ET_0 and the water balance
Russian River basin

<table>
<thead>
<tr>
<th>Monthly</th>
<th>E_0</th>
<th>ET</th>
<th>Prcp</th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>0.095</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prcp</td>
<td>0.172</td>
<td>0.014</td>
<td>0.619</td>
<td></td>
</tr>
<tr>
<td>Runoff</td>
<td>0.162</td>
<td>0.020</td>
<td>0.619</td>
<td>0.489</td>
</tr>
<tr>
<td>SM</td>
<td>0.339</td>
<td>0.041</td>
<td>0.241</td>
<td>0.489</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual</th>
<th>E_0</th>
<th>ET</th>
<th>Prcp</th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>0.408</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prcp</td>
<td>0.361</td>
<td>0.030</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>Runoff</td>
<td>0.487</td>
<td>0.028</td>
<td>0.626</td>
<td>0.652</td>
</tr>
<tr>
<td>SM</td>
<td>0.826</td>
<td>0.380</td>
<td>0.635</td>
<td>0.652</td>
</tr>
</tbody>
</table>

- E_0-Runoff r^2 (16%, 49%) exceeds ET-Runoff r^2 (2%, 3%).
- despite ET being a linear component of the hydrologic cycle!
EDDI and hydrologic drought
EDDI and the Standardized Runoff Index (SRI)

Can EDDI help predict late-summer (low-flow) streamflow?

Sacramento River Basin EDDI and SRI

- $r^2 = 0.72$

6 month EDDI (Nov-Apr)

12-month SRI (Oct-Sep)

McEvoy et al., 2014 (EDDI)
Shukla and Wood, 2008 (SRI)
EDDI and hydrologic drought
12-month SRI vs. 6-month EDDI

• At 5 sites, 6-month EDDI (Nov-Apr) shows strongest relationship to SRI.
• October-April E_0 explains greatest variance in WY streamflow (i.e., Oct 1-Sep 30).
• Highlights EDDI’s predictive capability.

EDDI contains no Prcp information!
EDDI as a drought leading indicator
Sacramento River basin

Optimizing EDDI window-length is straightforward.

Here, EDDI is optimized against USDM for the Sacramento River basin.

6- to 7-month EDDI predicts USDM 2-3 months ahead with $r = 0.6$.
• easy to calculate, physically rational:
 o responds rapidly to drying and wetting,
 o responds to both sustained and flash droughts,
 o independent of Prcp and R/S data,
 o low-latency ~5 days.

• permits decomposition of evaporative drought drivers.

• permits near real-time drought monitoring / early warning.

• consistent with USDM and other monitors, but not duplicative.

• multi-scalar:
 o short-term EDDI (e.g., < 12-week) good for agricultural areas,
 o long-term EDDI (e.g., 6-month) better for water-limited hydrologic drought monitoring.

• aggregation window may be calibrated for:
 o early warning relative to other monitors,
 o demands specific to regions, hydroclimates, and sectors.

• E_0 (and EDDI, and drought) can be forecast.