The Bering Sea and Typhoon
Rule II: case studies

Joseph S. Renken1, Joshua Herman, Travis Bradshaw2, and A. R. Lupo3
1KOPN Radio
2Moberly Area Community College
3University of Missouri
Columbia, MO
Introduction

- Weather forecasting can be performed dynamically with the aid of numerical models out to about 10 – 14 days.

- Beyond this point, statistical methods can be used reliably, but NOAA is experimenting with ensemble techniques.
Introduction

- Long range forecasting (monthly and seasonally) are performed using statistical and dynamical methods along with using knowledge of the dominant teleconnection activity (e.g., ENSO, PNA, Blocking, etc...).

- Our previous study showed some skill in using the Bering Sea Rule (BSR) and Typhoon Rule (TYR) in forecasting extreme weather over North America in the 6 – 30 day period.
Motivation

- There is a large gap in predictability in the three and four week period. (NOAA is experimenting with probabilistic outlooks using ensemble techniques.)

- Using simple indicies, there is a degree of predictability in the general conditions over North America using simple teleconnection indexes.
Dynamic Skill Scores

EMC Verification website: http://www.emc.ncep.noaa.gov/gmb/STATS_vsdb/

PNA Region (20N- 75N), (180E- 320E)

AC: HGT P500 Skill Scores (Upper right graph)

Day 5: .863
Day 6: .7665
Day 8: .531
Day 10: .3235

Average loss of skill per day: .107886
Data and Methods

- Data can be extracted using the NCEP/NOAA re-analyses from 1951 – present.

- We extracted the daily PNA index using the Climate Prediction Center truncated NCAR/NCEP Reanalysis page. This ftp site utilizes 1981-2010 for climatology.

- Data can also be extracted from the Climate Prediction Center Archive of Daily Indices page. This ftp page utilizes CDAS starting 01JAN50.
Methods

● Auto correlation and Fourier series was used to demonstrate that there is power in the 10 – 90 day period in the PNA region.

● This power may reflect Rossby Wave propagation through the region beyond the limit of dynamic predictability.
BSR and Typhoon Rule

- The BSR correlates 500 hPa heights in the Bering Sea to three points in the USA. Similar to the PNA index. Mean correlation is between 17-21 days.
BSR and Typhoon Rule

- The TYR correlates 500 hPa heights in East Asia to three points in the USA. Mean correlation is between 6-10 days.
Auto Correlation

- This figure shows auto correlation in the PNA & AO index during the period from 01AUG15-24OCT15.
Fourier Analysis

- Fourier decomposition of the daily time series of the PNA index from 1 Jan 1951 – present shows significant power in the 23 and 38 day range.
April 28, 2014 Case Study
April 8th, 2014 Bering Sea
April 20th, 2014 East Asia
April 28, 2014 Case Study

Lower 48 Storm Reports
April 27, 2011 Case Study

April 6th, 2011 Bering Sea

April 18th, 2011 East Asia
April 27th, 2011 Case Study

Lower 48

Storm Reports

SPC Storm Reports for 04/27/11
Map updated at 1211Z on 05/07/11

500mb Geopotential Height (m) Composite Anomaly (1981-2010 Climatology) 4/27/11 to 4/27/11
NCEP/NARR Reanalysis

TORNADO REPORTS... (292)
WIND REPORTS... (438/2)
HAIL REPORTS... (207/24)
TOTAL REPORTS..... (937)

National Weather Service
Storm Prediction Center Norman, Oklahoma

PRELIMINARY DATA ONLY.
March 2nd, 2012 Case Study

February 10th, 2012
Bering Sea

February 24th, 2012
East Asia
March 2nd, 2012 Case Study

Lower 48th

Storm Reports

500mb Geopotential Height (m) Composite Anomaly (1981-2010 Climatology)
3/2/12 to 3/2/12
NCEP/NCAR Reanalysis

SPC Storm Reports for 03/02/12
Map updated at 12:12Z on 03/12/12

- TORNADO REPORTS: 166
- WIND REPORTS: 325
- HAIL REPORTS: 469
- TOTAL REPORTS: 1154

High Winds Report (65KT+)
Large Hail Report (2.5" dia. +)
Preliminary Data Only.
April 14th, 2012 Case Study

March 25, 2012 Bering Sea

April 2, 2012 East Asia
April 14th, 2012 Case Study

Lower 48

Storm Reports

SPC Storm Reports for 04/14/12
Map updated at 1212Z on 04/24/12

500mb Geopotential Height (m) Composite Anomaly (1981-2010 Climatology)

4/14/12 to 4/14/12
NCEP/NARR Reanalysis
Typhoon Nuri Case Study

Bering Sea

East Asia
Typhoon Nuri Case Study

- Lower 48
June 2012 Heat Wave Case Study

Bering Sea

East Asia
June 2012 Heat Wave Case Study

- Lower 48
Conclusions

- The case studies demonstrated that even though there isn’t a “perfect” correlation, we can match the pattern very well and give various government, energy, agriculture, and other sectors forewarning about the potential for severe weather.
Meteorologist Verification

Jeremy Nelson, WISN-Milwaukee

Michael Clark, BAMChase-Indianapolis

Cold air flows in this Thursday -- right before Halloween. This cold push forecast October 5 using #BSR. #LRC #wiwx

Big cold front looms to start Oct. 1st mentioned to clients nearly a month ago. #AGwx #INwx Bamchase.Net

Late Sept/early Oct big trough? #BSR #AGwx Bamchase.Net $5 per month for long range updates twice a week.
Summary

- In this study, we analyzed the PNA index using autocorrelation and Fourier Analysis in order to demonstrate that predictability in the three to four week time frame is possible.

- We looked at case studies that encompass arctic spells, heat waves, and severe weather outbreaks from 1977-2015.
Conclusions

- Simple indices such as the BSR and TYR have utility in aiding prediction for the one to four week time frame.

- Some possible shortcomings to this technique would include rapidly changing character to the waves over the region, or influence from the tropics (e.g., MJO).

- These indices may be useful along with ensemble prediction to enhance predictability.
The End

- Please reference this site for more information like our correlation statistics, lag time, and regional forecasting based on SLP and temperature anomalies.
 - http://beringsearule.blogspot.com/

- Questions?

- Comments?

- Criticisms?

- Email: lupoa@mizzouri.edu, jdrenken7@gmail.com