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Abstract

Stochastic daily weather time-series models ("weather generators") are parameterized consistent with
both local climate and probabilistic seasonal forecasts. Both single-station weather generators, and spatial
networks of coherently operating weather generators are considered. Only a subset of parameters for
individual station models (proportion of wet days, precipitation mean parameters on wet days, and daily
temperature means and standard deviations) are found to depend appreciably on the seasonal temperature
and precipitation outcomes, so that extension to coherent multisite weather generators is straightforward.
The result alows stochastic simulation of multiple daily weather series, conditional on seasonal forecasts.
Example applications of spatially integrated extreme daily precipitation and snowpack water content are
used to illustrate the method.

1. Introduction

Recent advances in understanding the climate system have allowed successful forecasts of seasonal
temperature and precipitation at lead times up to ayear in advance. At least two groups currently produce
operational seasonal forecasts: the Climate Prediction Center (CPC) of the U.S. National Centersfor
Environmental Prediction (Barnston et al. 1999), and the International Research Institute (IRI) for
Climate Prediction (Mason et al. 1999). Both the CPC and IRI seasonal forecasts are issued in a discrete,
"tercile" format. That is, each forecast consists of atriplet of probabilities{ pB, pN, pA} pertaining to the
three events "below-normal," "near-normal,” and "above normal." Comparison of past seasonal forecasts
with corresponding observed seasonal outcomes has demonstrated real and potentially useful information
content (Wilks 2000a; Wilks and Godfrey 2000, 2002), but the temporally aggregated nature of the
forecast quantities may be difficult for some decision makers to incorporate into their operations. In
particular, many models of agricultural, hydrological, and other weather- and climate-sensitive managed
systems operate on adaily time step.

2. Weather generator

A simple and successful way of representing the statistics of daily weather variations is the class of time-
series models for surface weather data known as "weather generators' (Richardson 1981, Wilks and
Wilby 1999). Weather generators are straightforward to fit to observed data, and the fitted parameters can
be regarded as means of summarizing the surface climate of alocation. These models are also easily
linked to random number generation algorithms, to yield stochastic realizations of daily weather series
that resemble real weather data with respect to avariety of relevant statistics. Furthermore, their
mathematical structure is sufficiently simple that the implied seasonal statistics (to which seasonal
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forecasts pertain) can be computed from the parameters governing the daily stochastic weather processes
(e.g., Katz 1985, Wilks 1992). Details of the single-station weather generator used here are provided in
Wilks (2002).

Extension to spatially coherent weather generation can be accomplished by forcing collections of single-
site generators with random numbers having the proper spatial correlation structure (Wilks 1998). It is
useful and compact to parameterize these correlations, separately for the precipitation occurrence and
preci pitation amounts processes, according to station separation distances, using functions that produce
positive definite (physically realizable) correlation matrices (e.g., Cressie, 1993).

3. Weather generator parametersas functions of seasonal forecasts

Briggs and Wilks (1996) presented a procedure to estimate climatological statistics for a broad range of
subseasonal variables, conditional on seasonal forecast probabilities, by bootstrapping (Efron and
Tibshirani 1993) the observed climatological record consistent with the forecast probabilities. For
sufficiently smple statistics it is straightforward to make the computations analytically (Briggs and Wilks
1996, Crowley 2000).

Let NB, NN and NA be the number of yearsin a climatological record for agiven location and season in
which either the temperature or precipitation was below-, near-, or above-normal, respectively. Imagine a
bootstrapping procedure in which some large number L resamples are taken from this record with
replacement according to the probabilities in a seasonal forecast { pB, pN, pA} . The bootstrapped
expected value (i.e., climatological average, conditional on the forecast) of a statistic X isthen
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where, for example, xi(B) is the statistic of interest from the ith below-normal year. See Wilks (2002) for
fuller details.

The extension to coherent multiple-site weather generation requires estimation of spatial correlation
functions for both precipitation occurrences and amounts. The existence of such dependence can be
investigated by computing these correlations for subsets of years when both members of a station pair
experienced the same type (below-, near-, or above-normal) of season. For the stationsin New Y ork state
investigated here these correlations differ only slightly in aggregate, and will be assumed in the following
to be independent of the seasonal precipitation forecasts.
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4. Recovery of seasonal statistics

The foregoing development will be illustrated using daily temperature and precipitation observations
from 1951-1996 over the same network of 25 locationsin New Y ork state asin Wilks (1998). They are
distributed across an area of approximate dimension 500 km (east-west) by 100 km (north-south),
centered near 42N, 76W. Results described in this section pertain to all twelve (January-February-March
through December-January-February) seasons. One fundamental aspect of the performance of daily
weather generators conditioned on seasonal forecast probabilitiesis that the proportion of synthetic
outcomes in each of the three seasonal categories should agree with the forecast probabilities. Note that
the original forecasts are assumed to be well calibrated, so the question addressed here is the extent to
which calibration of the seasonal forecast probabilitiesis carried forward to the smulated daily series.

Figure 1 shows the results for seasonal precipitation, summarizing 10000 realizations each for the 300
combinations of the 25 stations and 12 seasons. For each location, season, and forecast probability, the
proportion of seasonal precipitation outcomes in each of the three categories has been tabulated. These
are displayed in Figure 1 in as boxplots for each forecast probability. The agreement between forecast
probabilities and outcome relative frequenciesis generally good, and indeed compares favorably with the
reliability of the forecasts themselves (Wilks 2000a; Wilks and Godfrey 2000, 2002).

Figure 2 shows the corresponding results for temperature forecasts at the 11 stations in the network that
report temperature data. For these simulations the precipitation forecast has been specified as pB = pN =
pA = 1/3 (daily temperature simulations are conditioned on series of ssmulated daily precipitation
occurrences). Again the daily weather generators yield distributions of seasonal outcomes that are
consistent with the proportions specified by each forecast.
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Figure 1. Distribufions {over 25 locations and 12 seasons) of relafive frequencies
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A useful diagnostic check for adaily weather generator is a comparison of its synthetic seasonal statistics
with the seasonal statistics of the observations to which it has been fit (Gregory et al. 1993, Wilks and
Wilby 1999). Figure 3 compares seasonal mean precipitation as simulated by daily weather generators
(horizontal) with corresponding analytical calculations (Wilks 2000b) based on the climatol ogical
seasonal means and the seasonal forecast probabilities (vertical). In each case (25 stations x 12 seasons)
thereisvery little scatter around the 1:1 line, indicating very good portrayal of the seasonal mean by the
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weather generators.
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Figure 3. Compansons of weathe r-generator sitnulated vs. calowlated mean seasoral
precipitation for: ) a "dry* forecast, (by a "near-normmal" forecast, (o) a "set" forecast,
and {d} the clitnatological forscast; cwer 300 cornbinationa of atations and acasons.
The 1:1ling iz drawn for cotnparison.

Figure 4 shows the corresponding results for standard deviations of seasonal precipitation, which

describe the interannual variability of the seasonal precipitation totals. Panels (a), (¢) and (d) exhibit the
commonly observed "overdispersion” phenomenon (e.g., Katz and Parlange 1998, Wilks and Wilby

1999), i.e., the seasonal variations as simulated by the daily generators are smaller on average than their
counterpartsin the observations . In contrast, the interannual variations of seasonal precipitation implied

by

the daily generator for the "near-normal" forecast (b) are larger than the relatively small calculated

values, which result is consistent with this modification of the weather generator parameters producing
too many "dry" and "wet" seasons.
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5. Two examples
a. Summer extreme precipitation

While the New Y ork stations considered in this paper are not part of a single watershed (they contribute
to the Hudson, Delaware, Susquehanna, and St. Lawrence rivers), they will be treated in this subsection
asif they comprised a single watershed, with each station contributing equally to an estimate of the
"watershed" total precipitation.

Consider the average "return period" R, for an event of magnitude X. The return period is conventionally
understood as the average time separating events of magnitude X or larger. In this subsection the event of
interest X isthe daily precipitation during the JJA season averaged over the entire "watershed,” so that

large values of X require large daily precipitation amounts simultaneously at a substantial fraction of the

25 stations.
The 46 years (1951-1996) of observed summer precipitation provide the data-based estimate for the
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basinwide return periods. Also considered are n = 10000-year realizations of spatially coherent daily
precipitation corresponding to a"dry" forecast (pB=0.50, pN=0.35, pA=0.15), a"wet" forecast (pB=0.15,
pN=0.35, pA=0.50) and the climatological ("CL") forecast (pB=pN=pA=1/3). Figure 5 shows the results
for average return periods between 2 and 1000 years. Circles indicate observed data values, the bold
curve shows results for the CL forecast, and the light solid lines indicate the dry and wet forecasts.
Results for the CL forecast agree reasonably well with the observed data, while ssmulated series based on
the forecasts substantially affect the probabilities for the extreme outcomes. Also shown in Figure 5 are
the results for the CL forecast, but with zero spatial correlation among the 25 simulated precipitation
series. In this case very large precipitation amounts occur simultaneously at multiple stations with rather
low probability, and the relationship to the observed extreme statistics is quite poor.
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b. Winter snowpack water equivalent

Another quantity of hydrological significance is the snowpack water equivalent (SWE), or liquid-
equivalent water content of the snow and ice on the ground. SWE is not routinely measured at the
Cooperative Observer stations, but will be modeled as afunction of daily precipitation and temperature
using the degree-day model of Carr (1988), which specifies 0.366 cm of snowmelt for each degree
Celsius of average daily ([ Tmax+ Tmin]/2 ) temperature above OU C. This relationship was developed in
Ontario, Canada, and has been found to be useful for quality-control of measured SWE datain the
northeastern United States (Schmidlin et al. 1995). The following simple model of SWE dynamics will
be used:

[ SWE(-1) + ppt) T = 0o (2a)
i Tpin (1) - T 1)
TWE(T) = max[n, SWE(-1) = 0.366 T () - 22 ppn:t}} RIS (21)
- Tt -
| mex [0, SWE(t-1)- 0366 T(t) | , 2T )
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Figure 6 shows extreme-value statistics for SWE during the DJF season, areally averaged over the 11
stations that have both temperature and precipitation data. Circles show modeled SWE using the 45
winters (1951/52—1995/96) of observed temperature and precipitation data. The solid lines show results
for 10000-year spatially coherent weather generator simulations using combinations of "dry" or "cool"
(pB=0.50, pN=0.35, pA=0.15), and "wet" or "warm" (pB=0.15, pN=0.35, pA=0.50) forecasts; or the
climatological (pB=pN=pA=1/3) forecast. Simulations based on the CL forecast (heavy line) reproduce
reasonably the results calculated from observed data.
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The combinations cool/dry and warm/wet nearly compensate in terms of the SWE extremes. In contrast,
the warm/dry and cool/wet combinations produce order-of-magnitude changes in extreme SWE return
periods. The dashed lines in Figure 6 show corresponding results for spatially independent CL forecasts,
which yield SWE extremes that are very much too light.

6. Conclusion

This paper has presented a method to adjust the parameters of daily time series models for weather data—
weather generators—in away that is consistent both with the observed climate of alocation and seasonal
forecasts in the format that is currently available operationally. It was found that only a subset of the
weather generator parameters are sensitive to changes in the seasonal climate implied by the forecasts.
For the precipitation submodel, only the unconditional probability of precipitation on a given day and
parameters controlling the mean precipitation on wet days are sensitive to variations in the seasonal
precipitation forecast. In the data considered here, only the daily temperature means and standard
deviations were found to be sensitive to variations in the seasonal temperature forecasts. Correlations
controlling time dependence of simulated weather series at individual locations varied to a much smaller
degree, and in practice the unconditional climatological correlations could be used. Similarly, the
correlations required to construct spatially coherent networks of weather generators were not sensitive to
different forecast probabilities, and unconditional values for these parameters could be used as well.
Before using the procedure described here for other regions, the validity of these results should be
checked. While the examples have assumed the same seasonal forecasts throughout the domain,
insensitivity of the spatial correlation functions to the seasonal forecasts implies that real applications
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could involve different forecast probabilities at different sites.

While subseasonal statistics consistent with a particular seasonal forecast can be estimated easily through
bootstrapping (Briggs and Wilks 1996), for simple statistics equivalent analytic calculations are faster,
more accurate, and no more difficult to implement. These calculations can be carried out on an as-needed
basis, or (as has been done here) once and for all, through summary functions. First-moment statistics
(mean fraction of wet days 11, and mean precipitation amounts and temperatures) are planar functions of
the forecast probabilities, while second-moment statistics (standard deviations and correlations) are
guadratic surfaces.

Finally, note that use of the procedures described here is predicated on the seasonal forecasts being well
calibrated ("reliable"). That is, relative frequencies of the event outcomes, conditional on the forecast
probabilities, need to be essentially equal to the forecast probabilities in order for these proceduresto be
valid. Limited experience to date has found notable deficiencies in the calibration of seasonal forecasts
(Wilks 2000a; Wilks and Godfrey 2000, 2002). Both the science and practice of seasonal forecasting
continue to improve, but the forecast products should be used carefully.
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