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1. Introduction 
 

In this paper, some statistical methods of producing probabilistic forecasts of monthly Niño-3.4 
sea-surface temperature anomalies are tested. A carefully constructed retroactive forecast procedure 
was designed to estimate as closely as possible the operational skill of the model predictions. The 
performances of the models are compared to that of probabilistic forecasts obtained from multiple 
linear regression. The methods considered are predictive discriminant analysis, canonical variate 
analysis, and various forms of generalized linear models. 
 
2. Data and methods 
 
a. Predictors 

Forecasts of monthly Niño-3.4 sea-surface temperature (SST) anomalies were produced at 
lead times of between 0 and 11 months. The forecasts were made using the first five principal 
component scores of antecedent monthly mean SSTs over the domain 25°N–25°S, 110°E–70°W. 
Data for the 50-yr period January 1951 to December 2000 were obtained from the Kaplan et al. 
(1998) dataset. Principal components were calculated from the correlation matrix of monthly 
anomaly data for the first 30 yr (1951–80), and for each month separately. The Niño-3.4 anomalies 
were grouped into five equiprobable categories over the training periods, defined as “La Niña”, 
“cool”, “normal”, “warm”, and “El Niño” conditions. 
 
b. Models 

Forecasts of Niño-3.4 anomalies were made using predictive discriminant analysis, canonical 
variate analysis, and various forms of generalized linear models. The performances of these 
probabilistic methods of forecasting were compared to forecasts from a multiple linear regression 
model. Probabilistic forecasts were obtained from the regression model in two ways: from the 
intersections of the prediction interval and the category boundaries; from a contingency table that 
defines the frequency distribution for each category contingent upon the mean response of the 
prediction (Pan and van den Dool 1998). (For the sake of simplicity, here on “multiple 
regression” is used to refer to the first method, and “contingency table” to the second.) Full details 
of all the models used are provided by Mason and Mimmack (2001, J. Climate, in press). 

The optimal combination of predictors for the discriminant analysis, generalized linear 
regression, multiple regression, and contingency table models was identified using a procedure 
based on the “maximum-posterior-probability/leave-one-out” method of variable selection 
(Huberty, 1994). Model parameters were estimated using all possible combinations of one or two 
variables (from the five available principal components), and the set of predictors that provided the 
best cross-validated fit over the training periods was selected. The cross-validation window was 
defined as 5 yr. The goodness of fit was measured by calculating the ranked probability score over 
the training period. For the canonical variate analysis model, all five predictors were included, but 
the number of retained canonical variates was varied. The selection criteria for the canonical variate 
analysis model therefore differ slightly from those for the other models. 
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c. Model validation 

Model performance was assessed using a retroactive forecast procedure so as to obtain realistic 
estimates of operational prediction skill. The training period was initially set as 30 years (1951–80), 
and retroactive predictions for the following 5 yr were then made using the optimal model. After 
this 5-yr period the model was retrained over the period 1951–85, possibly selecting different 
variables and a different number of retained variables, and predictions for 1986–90 were made. This 
procedure was repeated to produce a set of 20 yr of retroactive predictions. 

The models were validated using a variety of skill scores calculated with reference to 
strategies of random guessing and climatological probabilities. In addition, the performances of 
the various models were compared to a deterministic strategy of assuming the persistence of the 
monthly Niño-3.4 anomaly category, and to a strategy of “damped persistence”. For the 
persistence strategy, a probability of 100% was assigned to the observed category for the month 
from which the forecast was made. For the damped persistence strategy, probabilities of each of 
the five categories were defined by calculating the conditional probability of each category given 
the observed category for the month from which the forecast was made. 
 
3. Results 
 

Retroactive ranked probability skill scores (RPSSs) were calculated for forecasts at separate 
lead times, and are shown in Fig. 1, where they are compared with scores for damped persistence 
and persistence forecasts. The RPSSs are calculated with reference to a strategy of forecasting 
the climatological probabilities of each of the five categories. At all lead-times beyond zero the 
scores for all the models, except for the contingency table, exceed the scores for the persistence 
forecasts. The inability to out-score persistence at the shortest lead-time is a ubiquitous problem 
with dynamical and statistical models (Goddard et al. 2001). While the skill scores for the 
persistence forecasts decrease to zero after only about 3 months, for most of the model forecasts 
skill is positive out to about 9- or 10-months lead-time. Skill scores for forecasts of persistence 
damped toward climatology are shown by the light gray bars in Figs. 1. These forecasts provide 
the highest skill for lead times less than about 4 months, outscoring all the models and the 
simpler persistence forecasts, but the models provide more skilful forecasts at the longer lead 
times. Of all the models, the skills for the proportional odds and multiple regression model 
remain positive for the longest lead times, while again the contingency table model performs 
least well. The multiple regression model provides the best forecasts at the longest lead times. 

Reliability diagrams were constructed for each of the five categories to compare differences 
in the reliability of the forecasts from the models (Fig. 2). Diagrams for damped persistence are 
shown in place of those for the contingency table, which has been shown above to perform 
relatively poorly. The reliability curves indicate good reliability for forecasts of La Niña by all 
the models, and reliability is exceptional for the canonical variate analysis model. The forecast 
probabilities for this category are reasonably sharp, although less so than for forecasts of El 
Niño. The forecasts for El Niño show good reliability also, although there is a tendency towards 
over-confidence when forecast probabilities are high. The only exception is for damped 
persistence, which has a slight negative unconditional bias. 

The multiple regression model provides good reliability and minimal unconditional bias for 
all five categories. For the other models, the reliability of forecasts for the three intermediate 
categories is not as high as for La Niña and El Niño. In most cases, however, the curves are 
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upward sloping for probabilities below about 50%, indicating that the models are able to provide 
more reliable indications of diminished probabilities of the intermediate categories than of 
increased probabilities. The poor reliability for some of the extremely high forecast probabilities 
may be partly a sampling problem since there are few occurrences of very high probabilities. 

Brier skill scores were used to identify the dependence of forecast skill upon the outcome. 
The greater skill at predicting El Niño conditions compared to any of the other categories is 
clearly evident (Fig. 3). Notable skill at predicting La Niña conditions is evident also, and 
exceeds that of El Niño at lead times of greater than about 6 months. There is only very weak 
skill for the other categories. Forecasts for the cool category are poor partly because of an 
unconditional bias (forecast probabilities were consistently too high), but also because of poor 
forecast resolution as indicated by the reliability curves (Fig. 2). This positive bias was at the 
expense of negative biases for the El Niño category at all lead times. The models were thus 
unable to indicate completely successfully the predominance of El Niño conditions over the 
independent period, and over-forecasted the occurrence of negative anomalies. 
 
4. Summary 
 

A detailed validation of a selection of probabilistic statistical models for predicting ENSO has 
been presented. The models considered are discriminant analysis, canonical variate analysis, various 
forms of generalized linear regression, and two methods of converting multiple linear regression 
model predictions to probabilistic forecasts, namely from the prediction intervals, and by using 
contingency tables. The intention in this paper was not to construct the ideal model for forecasting 
ENSO, but rather to demonstrate a number of useful alternative statistical methods for generating 
probabilistic forecasts. Forecast skill was demonstrated for all the models at lead times of between 
about 4 or 5 months and 10 months. Most of the skill achieved is a result of the predictability of El 
Niño events, although the skill at forecasting La Niña events is also high, and forecast probabilities 
are more reliable than for El Niño. Only weak evidence of an ability to forecast intermediate 
conditions could be identified. 

There are no obvious reasons for preferring any one of the models considered in this paper, 
except that deriving probabilities from multiple regression by using a contingency table appears to 
be sub-optimal. Instead, greater skill can be obtained from a multiple regression model by using 
prediction intervals. This approach uniquely gave reliable forecasts for all five categories, and 
achieved the highest skill scores for lead times longer than about 6 months. The apparent inferiority 
of the probabilistic methods over the multiple regression model may be largely attributable to 
different sensitivities to sampling errors (the degrees of freedom are greatest for the multiple 
regression model). These differences can be decreased by reducing the number of categories from 
five to three, which weakens the differences in model skill notably (results not shown). 
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Fig. 1. Ranked probability skill scores for retroactive forecasts at increasing lead times of monthly Niño-3.4 sea 

surface temperature anomaly categories for Jan 1981–Dec 2000. The skill scores are calculated with 
reference to a strategy of forecasting climatology. The black bars represent the scores for the models, and 
the dark (light) gray bars are for forecasts of persisted anomaly categories (damped toward climatology). 
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Fig. 2. Reliability diagrams for retroactive forecasts at increasing lead times of La Niña (solid thin line), cool 

(dashed thin line), normal (dotted line), warm (dashed thick line), and El Niño (solid thick line) conditions 
for the 20-yr period Jan 1981–Dec 2000. Forecasts at all lead times and for all months are pooled. The 
histograms indicate the frequency of forecasts with probabilities in the ranges 0.0–0.05, 0.05–0.15, 0.15–
0.25, …, 0.95–1.0. The y-axes range to 1250. The top histogram is for El Niño conditions, the second top 
for warm conditions, and the rest as indicated. 
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Fig. 3. Brier skill scores for retroactive forecasts at increasing lead times of La Niña (black bars), cool (dark gray 

bars), normal (gray bars), warm (light gray bars), and El Niño (white bars) conditions for the 20-yr period 
Jan 1981–Dec 2000. 


