Recurrent, Anomalous Circulation Patterns Associated with Mongolian Summertime Rainfall Variability and “Dzud” Events

Bradfield Lyon and Nicole Davi

International Research Institute for Climate and Society, The Earth Institute, Columbia University, NY, NY

37th Climate Diagnostics and Prediction Workshop
Fort Collins, Colorado, 22-25 October 2012
Mongolia

Area: $\approx 1.5 \times 10^6 \text{ km}^2$ (2 x Texas)
Steppelands $\approx 300,000,000$ acres
Human pop. $\approx 3,000,000$
Cattle, sheep, goats: $\approx 30,000,000$
Semi-arid to arid
Harsh continental climate
Jun-Jul-Aug (JJA) Fraction of Annual Precipitation (GPCC)

- ≈ 85% of annual precipitation between April & September
- Annual temp. range > 45°C
- Very few studies on climate variability in Mongolia
- Regionally, weak statistical associations between PRCP & NAO, SNAO, PDO, ENSO, IMR
Dzud

white dzud
black dzud
iron dzud...

Images:
IFRC (top),
UNICEF (bot)
JJA 200 hPa Jet and Eddy Kinetic Energy

\[\text{EKE} = \frac{1}{2} (u'^2 + v'^2) \]
\[\langle qu \rangle = \langle qu \rangle + \langle q'u' \rangle \]

overbar = monthly average, ()’ = depart. from monthly average, < > = seasonal mean
Anomalous PRCP and (total) Moisture Flux: JJA Composite for 5 WETTEST and 5 DRIEST Seasons
GPCC PRCP Composite Difference: DRY (10) - WET (8)

Statistically significant (95%)

Two wave trains:
→ Subtropical jet
→ High Latitude
Regression of 200 hPa Φ onto Mongolia PRCP Time Series
(1979-2009; GPCC & Reanalysis)
Dry Summer in 2010 Associated with the Russian Heat Wave

Top: Trenberth and Fasullo 2012
Post-1998 JJA PRCP and Moisture Flux Anomalies (CMAP, Reanalysis)
An Abrupt Increase in Summer PRCP in Korea post-1998 (Choi et al. 2010)
Composite 200 hPa Phi Anomaly Post-1998 (Reanalysis)

• Why is this pattern a recurrent feature post-1998?
An Atlantic Connection

Correlation EA Pattern PC and 500 hPa height anomalies for JJA (CPC)

- Caribbean, tropical North ATL as a forcing region for European heat waves, 2010 blocking over Russia:
 - Schneidereit et al. 2012;
 - Cassou et al. 2005
Cold Pacific, Warm Atlantic on Multi-year Timescales

JJA Average SST Anomalies post-1998
Conclusions

• Summer precipitation dominates the annual cycle in Mongolia, with summer drought a key aspect of “dzud” events (and livestock losses)

• Interannual variations in summer precipitation associated with a recurrent, large-scale, atmospheric circulation anomaly pattern that spans across Eurasia that is frequently associated with upstream “blocking” (2010 Russian Heat Wave)

• An abrupt decline in Mongolia summertime precipitation after 1998 is seen in multiple datasets (and dendrochronologies)

• The above decline is again associated with a persistent large-scale atmospheric anomaly pattern. The role of Atlantic and Pacific SST forcing of this pattern is currently being investigated.
Additional Slides
Composite PRCP Anomaly (GPCC) Statistically Significant >90%

51, 65, 68, 72, 78, 80

59, 73, 84, 90, 93, 94, 98
Post-1998: JJA Composite PRCP Anomaly
(Statistically Significant P < 0.10; GPCC)
Cold Pacific, Warm Atlantic on Multi-year Timescales

JJA Average SST and PRCP Anomalies post-1998
Vulnerability Base Map (MARCC 2009) and drought sensitive tree-ring network (circles)