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Questions
• Science:  What are the roles of atmospheric

motions (turbulences, convections, large-scale
motions) for the spatial (vertical and
horizontal) variations of the warming pattern?
Specifically, can the atmospheric dynamics
alone explain a larger warming in high
latitudes?

• Technique: How do we incorporate
atmospheric dynamics in the climate feedback
analysis?
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Outline
• Brief review on the TOA-based feedback

analysis method (PRP method).
• Prototype approach in a theoretical model.
• Formulation of a new framework (CFRAM)
• Demonstration of the CFRAM and

comparison with the PRP method.
• Application of CFRAM to understand the

polar warming amplification in a GCM
without hydrological cycle.

• Summary
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General definition of feedback

• Forcing: an energy input to the system

• Response: an output of the system

• A feedback: an “induced input from the
output”
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A brief overview of the Partial
Radiative Perturbation (PRP) method

(designed for a globally uniform
SURFACE warming)
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Partial Radiative Perturbation Method
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• Forcing: a radiative flux perturbation at the TOA
• Response: surface temperature (or system

temperature)
• Feedback: additional radiative flux perturbations

at the TOA in response to surface temperature
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Partial Radiative Perturbation Method
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How do we incorporate the
dynamics into feedback analysis?

• Does atmospheric motion play a role in the
climate response to the external forcing?

• Even for a global uniform SURFACE
warming, what are the roles of evaporation
and surface sensible heat flux?

It turns out they are hidden in the
lapse rate feedback!!!
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Illustration of the new feedback
analysis in a simple climate model

The science question:

Can the surface warming in response to
anthropogenic greenhouse gases be still
stronger in high latitudes than in low
latitudes in the absence of ice-albedo
feedback?
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A coupled atmosphere-land/ocean moist radiative-
transportive climate model
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Coupled Response to external and feedbacks
(A prototype model that leads to the CFRAM, Cai and Lu 2007)
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Partial temperature changes due to (1) external forcing alone,
(2) water vapor,  (3) ice-albedo, (4) surface turbulent energy
flux (5) (non-local) dynamical feedbacks.
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Dry Model Solution
(Cai, 2005; Cai, 2006)

1. emissivity = constant;

2. Only partial temperature changes
due to the external forcing alone
and due to a change in the atmos.
poleward sensible heat transport
(non-local dynamical feedback)
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Dry Model Solution

!(A
1
" A

2
) =

#A
E1

3
A
E2

3
+ µ

A

A
E1

3
+ A

E2

3

$
2

(4#A
E1

3
A
E2

3
+ µ

A

A
E1

3
+ A

E2

3

(2 " $)$
)

(A
E1
" A

E2
)

!$

(2 " $)
> 0

where AEj are the equilibrium air temperatures for Δε = 0.

• Change in atmospheric equator-to-pole temperature contrast:

• Change in the surface temperatures:
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where GEj are the equilibrium surface temperatures for Δε = 0.

j = 1: low latitudes

j = 2: high latitudes
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How can it be possible that an
increase of air temperature gradient
can cause a reduction of the surface

temperature gradient?
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Partial temperature changes in the dry model
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The additional SURFACE warming in high latitudes is due to the
more “BACK-RADIATION” resulting from the increase
poleward heat transport (ΔD > 0) => “greenhouse-plus” feedback

The reduction of SURFACE warming in high latitudes is due to
the less “BACK-RADIATION” resulting from ΔD > 0 =>
“greenhouse-minus” feedback in low latitudes.

j = 1: low latitudes

j = 2: high latitudes
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Change of meridional temperature gradient due to
external forcing alone versus that due to dynamic

feedback in the dry model

Total change

Change by dyn. feedback

Direct response
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Coupled Atmosphere-Surface Climate
Feedback-Response Analysis Method

(CFRAM) for CGCM feedback analysis
(Lu & Cai 2008; Cai & Lu 2008)

• Forcing: an external perturbation profile in the
atmosphere-surface column at each grid point

• Response: a vertically varying atmosphere-surface
temperature profile at each grid point.

• Feedback: any energy flux perturbations that are
not caused by the the longwave radiation change
due to temperature changes.
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Mathematical formulation
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column temperature
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Mathematical formulation
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Feedback Gain Matrices in CFRAM
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What happens to the lapse rate?

(!
"R

toa

"Tj

)
j=1

M +1

# $Ts + (!
"R

toa

"Tj

)(
j=1

M

# $Tj ! $Ts )

+$
(% )
S
toa

+ $
(c)
(S

toa
! R

toa
) + $

(w)
(S

toa
! R

toa
) ! $D = !$F

toa

Vertical summation
from the TOA to
surface

!
tot
=
"#F

toa

#T
s

= !
P
+ !

$
+ !

%
+ !

c
+ !

w
+ !

D

Feedback
parameters in PRP

!
"
= (#

$R
toa

$T
j

)
j=1

M +1

%
&T

j
# &T

s

&T
s

Lapse rate
feedback

Lapse rate
feedback
decomposition

(!
"R

toa

"Tj
)(

j=1

M +1

#
$Tj ! $Ts

$Ts

) =

n=0

N

# { (!
"R

toa

"Tj
)(

j=1

M +1

#
$Tj

(n)
! $TM +1

(n)

$Ts

)}

= %&
(n)

n=0

N

# = %&



23

Demonstration of the CFRAM in
the context of a single-column
radiative-convective model

• Climate perturbation simulations by
doubling CO2 in the model.

• Feedbacks: water vapor, surface sensible
and dry convection, evaporation and “moist
convection” feedbacks
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   Model Climate  and   Climate forcing
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Downward radiation flux due to 2XCO
2
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Temperature Water vapor
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PRP method and Lapse Rate
Feedback Decomposition
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Demonstration of the CFRAM in
the context of a GCM without

hydrological cycle
(manuscript in preparation)

The science question:

Can the surface warming in response to
anthropogenic greenhouse gases be still
stronger in high latitudes than in low
latitudes in the absence of ice-albedo
feedback in a GCM model?



28

The key features of the GCM model
Dynamical core: Suarez and Held (1992)
Physics:
• Fu et al. (1992)’s radiation model.
• Dry convection adjustment so that maximum lapse

rate cannot exceed a preset meridional profile
(6.5K/1km in tropics and 9.8K/1km outside).

• Atmospheric relative humidity is kept at a preset
vertical and meridional profile.

• The surface energy balance model that exchanges
sensible heat flux, emits long wave radiation out,
and absorbs downward radiation at the surface.

• The annual mean solar forcing.
• 1CO2 versus 2CO2 climate simulations
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Climatology of the GCM
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2CO2 Climate forcing (w/m2) in the GCM

700 hPa

150 hPa (or “IPCC TOA”)

At the surface

At the model’s TOA 
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(Total) Warming pattern
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1.8 K

2.7 K 2.7 K2.2 K
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Partial ΔT due to 2CO2 & H2O

1.8 K

< 0 < 0

< 0

1.9 K

2CO2 only

1.5 K

< 0 < 0

H2O change
 only

3.1 K

< 0 < 0

< 0

2CO2 +
Δ(H2O)
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Change in TOA (S − R) and vertically
integrated horizontal energy transport

W
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“Red” + “Blue”
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Partial ΔT due to dynamics

Vertical 
transport

3.1 K

−1.0 K

Horizontal 
transportTotal

dynamical
feedback

2.3 K 2.3 K

0.5 K 0.5 K

−1.1 K

2.3 K 2.3 K
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Sum of partial ΔTs

3.1 K

< 0 < 0

< 0

2CO2 +
Δ(H2O)

2.3 K 2.3 K

Total
dynamical
feedbackTotal

change

1.8 K

2.7 K 2.7 K2.2 K
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Summary
• Radiative forcing of greenhouse gases (including water

vapor) tend to cause a stronger warming in low latitudes
and weaker warming in high latitudes in atmos. and surf..

• Vertical convection reduces the surface warming in
tropics and an enhanced poleward heat transport results in
a “greenhouse-plus” feedback (more back radiation from
the air to the surface) => a large SURFACE warming in
high latitudes even without ice-albedo feedbacks!

• Part of the total effects of individual thermodynamic and
non-local dynamical feedbacks and the total effects of all
local dynamical feedbacks are lumped into the lapse rate
feedback in a TOA-based framework.

• The CFRAM allows us to explicitly examine the roles of
both thermodynamic and dynamical feedback processes
in giving rise to the observed warming pattern.
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In a realistic model with water cycle:
We expect:
• A much stronger reduction of the surface warming in

tropics/subtropics due to the evaporation feedback
(about 1-2 K more warming reduction).

• Stronger moist convection in the deep tropics brings
energy to further up => stronger poleward heat
transport (including the latent heat transport) => a
larger dynamical warming amplification.

• Ice albedo feedback => further strengthens the polar
warming amplification.

• Role of clouds?  But the CFRAM can help to answer
that question!


