Attribution of Seasonal Climate Anomalies
September-October-November 2020

(https://www.cpc.ncep.noaa.gov/products/people/mchen/AttributionAnalysis/)
Summary of Observed Conditions and Outlooks

- **La Niña condition** continued in the central/eastern Pacific; tropical Indian Ocean and western Pacific Ocean continued to be on the warm side (slide 4). SSTs in extratropical northeast Pacific were above normal and maybe indicative of an ongoing Marine Heat Wave (MHW).

- The observed positive land temperature anomalies over northern Asia and Europe, far north Canada, Australia and S. America were well predicted in CFSv2 and other multi-model ensemble MME forecasts (slides 5, 13, 33, 34, & 38).

- In general, the large-scale distribution of negative and positive precipitation anomalies in the western Indian Ocean and equatorial Pacific (a reflection of La Niña conditions) was well predicted in CFSv2 and other MME forecast systems (slides 11, 33, 34, & 39).

- The initialized CFSv2 captured the large-scale structure of the observed positive height anomalies over tropics, while missed the large negative height anomalies over the region of central-east Canada that led terrors in forecasting cold temperature anomalies over the central NA (slides 12, 13, 15, & 16). This observed large cold temperature anomalies were also not predicted in various MME systems (Slides 33, 34 & 39).

- The CPC outlook anticipated the observed precipitation anomalies over most of US, while the NMME only indicated negative anomalies over the central part of US; CFSv2 missed most of observed anomalies (slides 7 & 14).

- The Nov 2020 monthly forecasts from the shortest 3-day-leads initial conditions predicted the observed negative precipitation anomalies over the southern US and west coast and cold anomalies over the region from Canada to the US northern boundary (slide 30 & 31).
Observed Seasonal Anomalies

Global and North America
Observed Anomaly SON2020

Prec (mm/day)

T2m (K)

z200 (m)
Observed Anomaly SON2020

Prec(mm/day)

T2m(K)

z200(m)
SON2020 CPC Seasonal Outlooks and NMME Forecasts

Temperature

- Non-EC Temp HSS = 35

Precipitation

- Non-EC Prec HSS = 64

For the rationale behind CPC outlooks see https://www.cpc.ncep.noaa.gov/products/archives/long_lead/PMD/2020/202008_PMD90D
Model Simulated/Forecast Ensemble Mean Anomalies
Model Simulated/Forecast Ensemble Average Anomalies

• CFS AMIP simulations forced with observed sea surface temperatures (18 members ensemble)

• CFSv2 real time operational forecasts
 – Seasonal forecast: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead). For example, 2016AMJ seasonal mean forecasts are 40 members from 22-31 March 2016 initial conditions.
 – Reconstructed forecast: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013). For example, the constructed 2016AMJ seasonal mean forecasts are the average of April 2016 forecasts from 22-31 March 2016 initial conditions, May 2016 forecasts from 21-30 April 2016 initial conditions, and June 2016 forecasts from 22-31 May 2016 initial conditions.

• Numbers at the panels indicate the spatial anomaly correlation (AC).
SON2020 Observed & Model Simulated/Forecast Ensemble Average Anomalies SST(K)

Obs

Seasonal Fcst AC(FL)=0.496 Reconstructed Fcst AC(FL)=0.725
SON2020 Observed & Model Simulated/Forecast
Ensemble Average Anomalies Prec (mm/day)

Obs

AMIP
AC(TRP)=0.192

Seasonal Fcst
AC(TRP)=0.455

Reconstructed Fcst
AC(TRP)=0.457
SON2020 Observed & Model Simulated/Forecast Ensemble Average Anomalies z200(m)

Observation

AMIP Simulation
AC(GL)=0.693

Seasonal Fcst
AC(GL)=0.679

Reconstructed Fcst
AC(GL)=0.744
SON2020 Observed & Model Simulated/Forecast
Ensemble Average Anomalies Prec(mm/day)

Observation

AMIP Simulation AC = -0.39

Seasonal Fcst AC = -0.42

Reconstructed Fcst AC = -0.16
SON2020 Observed & Model Simulated/Forecast
Ensemble Average Anomalies z200(m)

Observation

AMIP Simulation
AC=0.514

Seasonal Fcst
AC=0.468

Reconstructed Fcst
AC=0.487
Model Simulated/Forecast Anomalies: Individual Runs
In this analysis, anomalies from individual model runs are compared against the observed seasonal mean anomalies. The spatial resemblance between them is quantified based on anomaly correlation (AC).

The distribution of AC across all model simulations is indicative of probability of observed anomalies to have a predictable (or attributable) component.

One can also look at best and worst match between model simulated/forecast anomalies to assess the range of possible seasonal mean outcomes.

SON2020 Anomaly Correlation for Individual AMIP Simulation with Observation — z200(20N–90N)
SON2020 Anomaly Correlation for Individual CFSv2 Forecast with Observation -- z200 (20N–90N)

Seasonal Fcst

Reconstructed Fcst
Observed & CFSv2 Forecast Ensemble Average Anomalies
SON2020 z200(m) 40 runs/worst 4 runs/best 4 runs

Seasonal Forecast

AC=0.642 (20N–90N)

AC=0.315 (20N–90N)

AC=0.743 (20N–90N)
SON2020 Anomaly Correlation for Individual CFSv2 Forecast with Observation -- Prec(NA)/SST(30S–30N)

Prec Seasonal Fcst

Prec Reconstructed Fcst

SST Seasonal Fcst

SST Reconstructed Fcst
Observed & CFSv2 Forecast Ensemble Average Anomalies
SON2020 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

AC = -0.42
AC = -0.35
AC = 0.066
Observed & CFSv2 Forecast Ensemble Average Anomalies
SON2020 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast

- Obs
- 40 runs
- worst 4 runs
- best 4 runs

AC = -0.16
AC = -0.25
AC = 0.082
SON2020 Anomaly Correlation for Individual CFSv2 Forecast with Observation -- T2m(NA)/SST(30S–30N)

- **T2m Seasonal Fcst**
 - **T2m Reconstructed Fcst**

- **SST Seasonal Fcst**
 - **SST Reconstructed Fcst**

Models: 0–1-d-L, 2–3-d-L, 4–5-d-L, 6–7-d-L, 8–9-d-L

Correlation vs. Model Members
Observed & CFSv2 Forecast Ensemble Average Anomalies
SON2020 T2m(K) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast

AC=0.161

AC=-0.28

AC=0.567
Monthly Means Prec(mm/day) Observed & Forecasts

Top row: Observed anomaly
Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.
Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Monthly Means T2m(K) Observed & Forecasts

Monthly SON2020 T2m(K) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.

Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Seasonal Forecasts from other multi-model systems and linear models
C3S Seasonal Forecast
(https://climate.copernicus.eu/charts/c3s_seasonal/)
North American Multi-Model Ensemble Seasonal Forecast
(https://www.cpc.ncep.noaa.gov/products/NMME/)
200mb Height from Linear Model

SON2020 200mb Eddy HGT(m)
OBS vs. Linear Model Response to Tropical Heating
Heating is converted from Prate in 15S–15N

Pattern COR: global=0.20, tropics(30S–30N)=0.52
Seasonal Forecasts from the Constructed Analog Model
Seasonal Forecasts from WMO Lead Center for Long-Range Forecast Multi-Model Ensemble (LC-LRFMME)

https://www.wmolc.org/

- LC-LRFMME seasonal forecast are based on forecasts provided by WMO recognized Global Producing Centers (GPCs) for Long-Range Forecasts to the LC-LRFMME. Contribution of all GPCs is acknowledged.
- Seasonal forecasts from GPCs are merged into a multi-model ensemble forecast.
- LC-LRFMME forecasts are based on GPC seasonal forecast systems run during the first week of the month for the next season. For example, forecasts runs in first week of January for the seasonal mean of February-March-April.
- Forecasts in slides 42-45 are from the Lead Center.
- For latest seasonal outlook guidance see http://www.wmo.int/pages/prog/wcp/wcasp/LC-LRFMME/index.php

For more information see visit Lead Center website; also see Graham, R., and Co-authors, 2011: New perspectives for GPCs, their role in the GFCS and a proposed contribution to a ‘World Climate Watch’. Climate Research, 47, 47-55.
Simple Composite Map
Beijing, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

Precipitation: SON2020

[Unit: mm]
(issued on Aug2020)
Probabilistic Multi-Model Ensemble Forecast
Beijing, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

2m Temperature: SON2020

(issued on Aug2020)
Probabilistic Multi-Model Ensemble Forecast
Beijing, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

Precipitation: SON2020

(issued on Aug2020)
Background & Methodology
Attribution of Seasonal Climate Anomalies

• Goal

 – In the context of prediction of seasonal climate variability, utilize seasonal climate forecasts and atmospheric general circulation model (AGCM) simulations to attribute possible causes for the observed seasonal climate anomalies.
 – The analysis can also be considered as an analysis of predictability of the observed seasonal climate anomalies.
• Compare observed seasonal mean anomalies with those from model simulations and forecasts.
• Ensemble averaged model simulated/predicted seasonal mean anomalies are an indication of the predictable (or attributable) component of the corresponding observed anomalies.
• For seasonal mean atmospheric anomalies, predictability could be due to
 – Anomalous boundary forcings [e.g., sea surface temperature (SSTs); soil moisture etc.];
 – Atmospheric initial conditions.
• The influence of anomalous boundary forcings (particularly due to SSTs, can be inferred from the ensemble mean of AGCM simulations forced by observed SSTs, the so called AMIP simulations). This component of predictability (or attributability) is more relevant for longer lead seasonal forecasts.
• The influence of the atmospheric initial state can be inferred from initialized predictions. This component is more relevant for short lead seasonal forecasts.
• The influence of unpredictable component in the atmospheric variability can be assessed from the analysis of individual model simulations, and the extent anomalies in individual runs deviate from the ensemble mean anomalies.
• The relative amplitude of ensemble averaged seasonal mean anomalies to the deviations of seasonal mean anomalies in the individual model runs from the ensemble average is a measure of seasonal predictability (or the extent observed anomalies are attributable).
• Observed anomalies are equivalent to a realization of a single model run, and therefore, analysis of individual model runs also gives an appreciation of how much observed anomalies can deviate from the component that is attributable (Kumar et al. 2013).
Data

• Observations
 – SST: NCDC daily OI analysis (Reynolds et al., 2007)
 – Prec: CMAP monthly analysis (Xie and Arkin, 1997)
 – T2m: GHCN-CAMS land surface temperature monthly analysis (Fan and van den Dool, 2008)
 – 200mb height (z200): CFSR (Saha et al., 2010)
• 0-month-lead seasonal mean forecasts from CFSv2 (Saha et al. 2014)
 – Seasonal forecast: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead);
 – Reconstructed forecast: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013);
• Seasonal mean AMIP simulation from CFSv2 (provided by Dr. Bhaskar Jha/CPC)
 – 18 members
• All above seasonal mean anomalies are based on 1999-2010 climatology.
• z200 responses to tropical heating in linear model (provided by Dr. Peitao Peng/CPC)
• Seasonal mean anomalies of z200, T2m, and Prec forecasted from the Constructed Analog Model (provided by Dr. Peitao Peng/CPC)