Attribution of Seasonal Climate Anomalies
November-December-January 2020-21

(https://www.cpc.ncep.noaa.gov/products/people/mchen/AttributionAnalysis/)
Summary of Observed Conditions and Outlooks

- **La Niña condition** continued in the central/eastern Pacific; tropical Indian Ocean and western Pacific Ocean remained on the warm side (slide 4). SSTs in extratropical northeast Pacific were much above normal and maybe indicative of an ongoing Marine Heat Wave (MHW).

- The observed land temperature anomalies over east Asia and west Europe, far north Canada and Alaska, and northern Australia continued their tendency to be above normal and were well predicted in CFSv2 and other multi-model ensemble MME forecasts (slides 5, 13, 33, 34, & 38).

- In general, the large-scale distribution of negative and positive precipitation anomalies in the equatorial Pacific and over the Maritime Continent (a reflection of La Niña conditions) was well predicted in CFSv2 and other MME forecast systems (slides 11, 33, 34, & 39).

- The initialized CFSv2 captured the large-scale structure of the observed positive height anomalies over tropics, mid-latitudes, and polar regions, while missed the large positive height anomalies over the NE of North America leading to errors in forecasting warm temperature anomalies (slides 12, 13, 15, & 16). The forecast NA precipitation anomalies in the CFSv2 and MME models (slides 7, 14) were in the pattern consistent with the La Nina composite, however, were very different from the observed anomalies (slide2s, 7, 14. 39, 41)

- The Jan2021 monthly forecasts from the shortest 3-day-leads initial conditions captured most of the observed temperature anomalies over North America (slide 31).
Observed Seasonal Anomalies

Global and North America
Observed Anomaly NDJ2020/2021

Prec(mm/day)

T2m(K)

z200(m)
Observed Anomaly NDJ2020/2021

Prec(mm/day)

T2m(K)

z200(m)
NDJ2020/21 CPC Seasonal Outlooks and NMME Forecasts

Temp nonEC HSS=74

Prec nonEC HSS=2

For the rationale behind CPC outlooks see https://www.cpc.ncep.noaa.gov/products/archives/long_lead/PMD/2020/202010_PMD90D
Model Simulated/Forecast Ensemble Mean Anomalies
• CFS AMIP simulations forced with observed sea surface temperatures (18 members ensemble)

• CFSv2 real time operational forecasts
  
  – **Seasonal forecast**: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead). For example, 2016AMJ seasonal mean forecasts are 40 members from 22-31 March 2016 initial conditions.

  – **Reconstructed forecast**: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013). For example, the constructed 2016AMJ seasonal mean forecasts are the average of April 2016 forecasts from 22-31 March 2016 initial conditions, May 2016 forecasts from 21-30 April 2016 initial conditions, and June 2016 forecasts from 22-31 May 2016 initial conditions.

• Numbers at the panels indicate the spatial anomaly correlation (AC).
NDJ2020/2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies SST(K)

Obs

Seasonal Fcst AC(GL)=0.628

Reconstructed Fcst AC(GL)=0.780
NDJ2020/2021 Observed & Model Simulated/Forecast
Ensemble Average Anomalies Prec(mm/day)

Obs

AMIP
AC(TRP)=0.426

Seasonal Fcst
AC(TRP)=0.535

Reconstructed Fcst
AC(TRP)=0.625
NDJ2020/2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies Prec(mm/day)

Observation

AMIP Simulation

AC = -0.39

Seasonal Fcst

AC = -0.21

Reconstructed Fcst

AC = -0.27
NDJ2020/2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies z200(m)
Model Simulated/Forecast Anomalies: Individual Runs
In this analysis, anomalies from individual model runs are compared against the observed seasonal mean anomalies. The spatial resemblance between them is quantified based on anomaly correlation (AC).

The distribution of AC across all model simulations is indicative of probability of observed anomalies to have a predictable (or attributable) component.

One can also look at best and worst match between model simulated/forecast anomalies to assess the range of possible seasonal mean outcomes.

NDJ2020/2021 Anomaly Correlation for Individual AMIP Simulation with Observation — z200(20N–90N)
NDJ2020/2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation — z200 (20N–90N)

Seasonal Fcst

Reconstructed Fcst

model members

model members
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 z200(m) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

Obs

40 runs
AC=0.629(20N–90N)

worst 4 runs
AC=0.220(20N–90N)

best 4 runs
AC=0.787(20N–90N)
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 z200(m) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast

40 runs
AC=0.792(20N-90N)

worst 4 runs
AC=0.586(20N-90N)

best 4 runs
AC=0.820(20N-90N)
NDJ2020/2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation — Prec(NA)/SST(30S–30N)
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

AC=−0.21
AC=−0.35
AC=0.253
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast
NDJ2020/2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation -- T2m(NA)/SST(30S–30N)

T2m Seasonal Fcst

T2m Reconstructed Fcst

SST Seasonal Fcst

SST Reconstructed Fcst
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 T2m(K) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

AC = 0.130
AC = -0.46
AC = 0.668
Observed & CFSv2 Forecast Ensemble Average Anomalies
NDJ2020/2021 T2m(K) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast

AC=0.604

AC=0.228

AC=0.700
Monthly NDJ2020/2021 Prec(mm/day) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.

Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Monthly Means T2m(K) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.

Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Seasonal Forecasts from other multi-model systems and linear models
C3S Seasonal Forecast
(https://climate.copernicus.eu/charts/c3s_seasonal/)
North American Multi-Model Ensemble Seasonal Forecast
(https://www.cpc.ncep.noaa.gov/products/NMME/)
200mb Height from Linear Model

NDJ2020–21 200mb Eddy HGT(m)
OBS vs. Linear Model Response to Tropical Heating
Heating is converted from Prate in 15S–15N

OPI Prate Anom (mm/day)

OBS (from R1) vs. Linear Model Response to Tropical Heating

Pattern COR: global=0.20, tropics(30S–30N)=0.52
Seasonal Forecasts from the Constructed Analog Model

CA HGT200 Prd for NDJ2020/2021, ICs through Jan2021(m), Lead -3

CA T2m Prd for NDJ2020/2021, ICs through Jan2021(K), Lead -3

CA Prec Prd for NDJ2020/2021, ICs through Jan2021(mm/day), Lead -3
Seasonal Forecasts from WMO Lead Center for Long-Range Forecast Multi-Model Ensemble (LC-LRFMME)

https://www.wmolc.org/

- LC-LRFMME seasonal forecast are based on forecasts provided by WMO recognized Global Producing Centers (GPCs) for Long-Range Forecasts to the LC-LRFMME. Contribution of all GPCs is acknowledged.
- Seasonal forecasts from GPCs are merged into a multi-model ensemble forecast.
- LC-LRFMME forecasts are based on GPC seasonal forecast systems run during the first week of the month for the next season. For example, forecasts runs in first week of January for the seasonal mean of February-March-April.
- Forecasts in slides 42-45 are from the Lead Center.
- For latest seasonal outlook guidance see http://www.wmo.int/pages/prog/wcp/wcasp/LC-LRFMME/index.php

*For more information see visit Lead Center website; also see Graham, R., and Co-authors, 2011: New perspectives for GPCs, their role in the GFCS and a proposed contribution to a ‘World Climate Watch’. Climate Research, 47, 47-55.*
Simple Composite Map
Beijing, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

2m Temperature: NDJ2020

(Unit: K)
(issued on Oct2020)
Simple Composite Map
Beijing, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

Precipitation: NDJ2020

[Unit: mm]
(issued on Oct2020)
Precipitation: NDJ2020

(issued on Oct2020)
Background & Methodology
Attribution of Seasonal Climate Anomalies

• Goal

  – In the context of prediction of seasonal climate variability, utilize seasonal climate forecasts and atmospheric general circulation model (AGCM) simulations to attribute possible causes for the observed seasonal climate anomalies.
  – The analysis can also be considered as an analysis of predictability of the observed seasonal climate anomalies.
• Compare observed seasonal mean anomalies with those from model simulations and forecasts.
• Ensemble averaged model simulated/predicted seasonal mean anomalies are an indication of the predictable (or attributable) component of the corresponding observed anomalies.
• For seasonal mean atmospheric anomalies, predictability could be due to
  – Anomalous boundary forcings [e.g., sea surface temperature (SSTs); soil moisture etc.];
  – Atmospheric initial conditions.
• The influence of anomalous boundary forcings (particularly due to SSTs, can be inferred from the ensemble mean of AGCM simulations forced by observed SSTs, the so called AMIP simulations). This component of predictability (or attributability) is more relevant for longer lead seasonal forecasts.
• The influence of the atmospheric initial state can be inferred from initialized predictions. This component is more relevant for short lead seasonal forecasts.
• The influence of unpredictable component in the atmospheric variability can be assessed from the analysis of individual model simulations, and the extent anomalies in individual runs deviate from the ensemble mean anomalies.
• The relative amplitude of ensemble averaged seasonal mean anomalies to the deviations of seasonal mean anomalies in the individual model runs from the ensemble average is a measure of seasonal predictability (or the extent observed anomalies are attributable).
• Observed anomalies are equivalent to a realization of a single model run, and therefore, analysis of individual model runs also gives an appreciation of how much observed anomalies can deviate from the component that is attributable (Kumar et al. 2013).
Data

• Observations
  – SST: NCDC daily OI analysis (Reynolds et al., 2007)
  – Prec: CMAP monthly analysis (Xie and Arkin, 1997)
  – T2m: GHCN-CAMS land surface temperature monthly analysis (Fan and van den Dool, 2008)
  – 200mb height (z200): CFSR (Saha et al., 2010)

• 0-month-lead seasonal mean forecasts from CFSv2 (Saha et al. 2014)
  – Seasonal forecast: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead);
  – Reconstructed forecast: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013);

• Seasonal mean AMIP simulation from CFSv2 (provided by Dr. Bhaskar Jha/CPC)
  – 18 members

• All above seasonal mean anomalies are based on 1999-2010 climatology.

• z200 responses to tropical heating in linear model (provided by Dr. Peitao Peng/CPC)

• Seasonal mean anomalies of z200, T2m, and Prec forecasted from the Constructed Analog Model (provided by Dr. Peitao Peng/CPC)