Attribution of Seasonal Climate Anomalies
October-November-December 2021

(https://www.cpc.ncep.noaa.gov/products/people/mchen/AttributionAnalysis/)
Summary of Observed Conditions and Outlooks

• SST cold anomalies continued in the equatorial central and eastern Pacific (La Nina conditions); the equatorial Atlantic and N Pacific Ocean remained on the warm side (slide 4). In general, the large-scale distribution of SST anomalies was predicted well (slide 10);

• The large scale distribution of dry, wet, and dry precipitation anomalies in the equatorial western Indian Ocean, the eastern Indian Ocean - the Maritime Continent, and the equatorial western - central Pacific Ocean respectively was predicted well in the initialized CFSv2 and other MME models (slides 11, 35, 36, 38 & 39).

• The initialized CFSv2 forecasts predicted well the observed 200mb height anomalies globally leading to a reasonable prediction in the large-scale distribution of temperature anomalies. The negative (positive) height anomalies over the Alaska and western Canada (eastern Canada and the US) were predicted well and resulted in skillful prediction of temperature anomalies over these regions (slides 12, 13, 15, &16).

• Warm T2m anomalies over the US were well predicted by the CPC seasonal outlook that generally rely on MME forecasts (slide 7).

• The initialized CFSv2 forecasts predicted the most of dry precipitation anomalies over the Southern US and wet anomalies over northern California (slide 14); the monthly mean forecasts with the shortest leads did not provide additional skills (slide 30, 31).
Observed Seasonal Anomalies

Global and North America
Observed Anomaly OND2021

Prec(mm/day)

T2m(K)

z200(m)
CPC Seasonal Outlooks and NMME Forecasts

Temperature

Precipitation

Temp nonEC  
HSS=75

CPC

Prec nonEC  
HSS=12

For the rationale behind CPC outlooks see:  
https://www.cpc.ncep.noaa.gov/products/archives/long_lead/PMD/2021/202109_PMD90D
Model Simulated/Forecast Ensemble Mean Anomalies
Model Simulated/Forecast Ensemble Average Anomalies

- **CFS AMIP simulations** forced with observed sea surface temperatures (18 members ensemble)

- **CFSv2 real time operational forecasts**
  - **Seasonal forecast**: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead). For example, 2016AMJ seasonal mean forecasts are 40 members from 22-31 March 2016 initial conditions.
  - **Reconstructed forecast**: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013). For example, the constructed 2016AMJ seasonal mean forecasts are the average of April 2016 forecasts from 22-31 March 2016 initial conditions, May 2016 forecasts from 21-30 April 2016 initial conditions, and June 2016 forecasts from 22-31 May 2016 initial conditions.

- Numbers at the panels indicate the spatial anomaly correlation (AC).
OND2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies Prec(mm/day)

- **Obs**
- **AMIP** AC(TRP)=0.318
- **Seasonal Fcst** AC(TRP)=0.591
- **Reconstructed Fcst** AC(TRP)=0.614
OND2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies T2m(K)

Observation

AMIP Simulation  AC(GL)=0.536

Seasonal Fcst  AC(GL)=0.544

Reconstructed Fcst  AC(GL)=0.662

Climate Prediction Center/NCEP/NWS/NOAA
OND2021 Observed & Model Simulated/Forecast Ensemble Average Anomalies T2m(K)

Observation

AMIP Simulation

Seasonal Fcst

Reconstructed Fcst

AC=0.704

AC=0.691

AC=0.847
Model Simulated/Forecast Anomalies: Individual Runs
• In this analysis, anomalies from individual model runs are compared against the observed seasonal mean anomalies. The spatial resemblance between them is quantified based on anomaly correlation (AC).
• The distribution of AC across all model simulations is indicative of probability of observed anomalies to have a predictable (or attributable) component.
• One can also look at best and worst match between model simulated/forecast anomalies to assess the range of possible seasonal mean outcomes.
OND2021 Anomaly Correlation for Individual AMIP Simulation with Observation -- z200(20N–90N)
Observed & AMIP Ensemble Average Anomalies
OND2021 z200(m) 18 runs/worst 2 runs/best 2 runs

18 runs
AC=0.512(20N–90N)

worst 2 runs
AC=0.127(20N–90N)

best 2 runs
AC=0.669(20N–90N)
OND2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation — z200 (20N–90N)
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 Z200(m) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

AC=0.692(20N−90N)
AC=0.182(20N−90N)
AC=0.703(20N−90N)
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 z200(m) 40 runs/worst 4 runs/best 4 runs

Reconstructed Forecast

AC=0.701(20N–90N)

AC=0.409(20N–90N)

AC=0.763(20N–90N)
OND2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation — Prec(NA)/SST(30S–30N)

- **Prec Seasonal Fcst**
  - Ensemble mean
  - 0–1–d–L
  - 2–3–d–L
  - 4–5–d–L
  - 6–7–d–L
  - 8–9–d–L

- **Prec Reconstructed Fcst**
  - Ensemble mean
  - 0–1–d–L
  - 2–3–d–L
  - 4–5–d–L
  - 6–7–d–L
  - 8–9–d–L

- **SST Seasonal Fcst**
  - Ensemble mean
  - 0–1–d–L
  - 2–3–d–L
  - 4–5–d–L
  - 6–7–d–L
  - 8–9–d–L

- **SST Reconstructed Fcst**
  - Ensemble mean
  - 0–1–d–L
  - 2–3–d–L
  - 4–5–d–L
  - 6–7–d–L
  - 8–9–d–L
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 Prec(mm/day) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast
OND2021 Anomaly Correlation for Individual CFSv2 Forecast with Observation -- T2m(NA)/SST(30S–30N)

- **T2m Seasonal Fcst**
  - Model members: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40

- **T2m Reconstructed Fcst**

- **SST Seasonal Fcst**

- **SST Reconstructed Fcst**

Legend:
- ensemble mean
- 0–1–d–L
- 2–3–d–L
- 4–5–d–L
- 6–7–d–L
- 8–9–d–L
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 T2m(K) 40 runs/worst 4 runs/best 4 runs
Seasonal Forecast

Observed anomalies (left) compared to 40 runs (middle) and worst/best 4 runs (right) with correlation coefficients AC = 0.691 and AC = -0.09, respectively.
Observed & CFSv2 Forecast Ensemble Average Anomalies
OND2021 T2m(K) 40 runs/worst 4 runs/best 4 runs
Reconstructed Forecast
Monthly Means Prec(mm/day) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.

Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Monthly Means Prec(mm/day) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 monthly forecasts from the initial conditions near 10\textsuperscript{th} day of the month prior to the target month.

Bottom row: CFSv2 monthly forecasts from the initial conditions near 20\textsuperscript{th} day of the month prior to the target month.
Monthly Means T2m(K) Observed & Forecasts

Top row: Observed anomaly

Middle row: CFSv2 seasonal forecasts from the initial conditions from the month prior to the target season.

Bottom row: CFSv2 monthly forecasts from the last three days of the month prior to the target month.
Monthly Means T2m(K) Observed & Forecasts

Monthly OND2021 T2m(K) Observed & Forecasts (at long leads)

Top row: Observed anomaly

Middle row: CFSv2 monthly forecasts from the initial conditions near 10th day of the month prior to the target month.

Bottom row: CFSv2 monthly forecasts from the initial conditions near 20th day of the month prior to the target month.
Seasonal Forecasts from WMO Lead Center for Long-Range Forecast Multi-Model Ensemble (LC-LRFMME)

https://www.wmolc.org/

- LC-LRFMME seasonal forecasts are based on forecasts provided by WMO recognized Global Producing Centers (GPCs) for Long-Range Forecasts to the LC-LRFMME. Contribution of all GPCs is acknowledged.
- Seasonal forecasts from GPCs are merged into a multi-model ensemble forecast.
- LC-LRFMME forecasts are based on GPC seasonal forecast systems run during the first week of the month for the next season. For example, forecasts runs in first week of January for the seasonal mean of February-March-April.
- Forecasts in slides 42-45 are from the Lead Center.
- For latest seasonal outlook guidance see http://www.wmo.int/pages/prog/wcp/wcasp/LC-LRFMME/index.php

For more information see visit Lead Center website; also see Graham, R., and Co-authors, 2011: New perspectives for GPCs, their role in the GFCS and a proposed contribution to a ‘World Climate Watch’. Climate Research, 47, 47-55.
LC-LRFMM Seasonal Forecasts (ensemble means)

(https://www.wmolc.org/)

Simple Composite Map
Beijing, Bologna, CPTEC, ECMWF, Exeter, Melbourne, Montreal, Moscow, Offenbach, Seoul, Tokyo, Toulouse, Washington

2m Temperature: OND2021
(Unit: K)
(issued on Sep 2021)

Precipitation: OND2021
(Unit: mm)
(issued on Sep 2021)
LC-LRFMM Seasonal Forecasts (probabilities)  
(https://www.wmольc.org/)
Seasonal Forecasts from other multi-model systems and linear models
C3S Seasonal Forecast

(https://climate.copernicus.eu/charts/c3s_seasonal/)
North American Multi-Model Ensemble Seasonal Forecast

(https://www.cpc.ncep.noaa.gov/products/NMME/)
200mb Height from Linear Model

OND2021 200mb Eddy HGT(m)
OBS vs. Linear Model Response to Tropical Heating
Heating is converted from Prate in 15S–15N

Pattern COR: global=0.34, tropics(30S–30N)=0.50
Seasonal Forecasts from the Constructed Analog Model
Background & Methodology
Attribution of Seasonal Climate Anomalies

- Goal

  - In the context of prediction of seasonal climate variability, utilize seasonal climate forecasts and atmospheric general circulation model (AGCM) simulations to attribute possible causes for the observed seasonal climate anomalies.
  
  - The analysis can also be considered as an analysis of predictability of the observed seasonal climate anomalies.
• Compare observed seasonal mean anomalies with those from model simulations and forecasts.
• Ensemble averaged model simulated/predicted seasonal mean anomalies are an indication of the predictable (or attributable) component of the corresponding observed anomalies.
• For seasonal mean atmospheric anomalies, predictability could be due to
  – Anomalous boundary forcings [e.g., sea surface temperature (SSTs); soil moisture etc.];
  – Atmospheric initial conditions.
• The influence of anomalous boundary forcings (particularly due to SSTs, can be inferred from the ensemble mean of AGCM simulations forced by observed SSTs, the so called AMIP simulations). This component of predictability (or attributability) is more relevant for longer lead seasonal forecasts.
The influence of the atmospheric initial state can be inferred from initialized predictions. This component is more relevant for short lead seasonal forecasts.

The influence of unpredictable component in the atmospheric variability can be assessed from the analysis of individual model simulations, and the extent anomalies in individual runs deviate from the ensemble mean anomalies.

The relative amplitude of ensemble averaged seasonal mean anomalies to the deviations of seasonal mean anomalies in the individual model runs from the ensemble average is a measure of seasonal predictability (or the extent observed anomalies are attributable).

Observed anomalies are equivalent to a realization of a single model run, and therefore, analysis of individual model runs also gives an appreciation of how much observed anomalies can deviate from the component that is attributable (Kumar et al. 2013).
Data

• Observations
  – SST: OI version 2 analysis (Reynolds et al., 2007)
  – Prec: CMAP monthly analysis (Xie and Arkin, 1997)
  – T2m: GHCN-CAMS land surface temperature monthly analysis (Fan and van den Dool, 2008)
  – 200mb height (z200): CFSR (Saha et al., 2010)

• 0-month-lead seasonal mean forecasts from CFSv2 (Saha et al. 2014)
  – Seasonal forecast: the seasonal mean forecasts based on 40 members from the latest 10 days before the target season (0-month-lead);
  – Reconstructed forecast: the seasonal mean forecasts constructed from 3 individual monthly forecasts with the latest 10 days initial conditions for each individual monthly forecasts. This approach for constructing seasonal mean anomalies has more influence from the initial conditions (Kumar et al. 2013);

• Seasonal mean AMIP simulation from CFSv2 (provided by Dr. Bhaskar Jha/CPC)
  – 18 members

• All above seasonal mean anomalies are based on 1991-2020 climatology.
• z200 responses to tropical heating in linear model (provided by Dr. Peitao Peng/CPC)
• Seasonal mean anomalies of z200, T2m, and Prec forecasted from the Constructed Analog Model (provided by Dr. Peitao Peng/CPC)