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ABSTRACT

This paper analyzes long-term surface air temperature trends in a 25-yr (1982–2006) dataset of retro-

spective seasonal climate predictions made by the NCEP Climate Forecast System (CFS), a model that has its

atmospheric greenhouse gases fixed at the 1988 concentration level. Although the CFS seasonal forecasts

tend to follow the observed interannual variability very closely, there exists a noticeable time-dependent

discrepancy between the CFS forecasts and observations, with a warm model bias before 1988 and a cold bias

afterward except for a short-lived warm bias during 1992–94. The trend from warm to cold biases is likely

caused by not including the observed increase in the anthropogenic greenhouse gases in the CFS, whereas the

warm bias in 1992–94 reflects the absence of the anomalous aerosols released by the 1991 Mount Pinatubo

eruption. Skill analysis of the CFS seasonal climate predictions with and without the warming trend suggests

that the 1997–98 El Niño event contributes significantly to the record-breaking global warmth in 1998

whereas the record-breaking warm decade since 2000 is mainly due to the effects of the increased greenhouse

gases. Implications for operational seasonal prediction will be discussed.

1. Introduction

Traditionally, operational weather forecast centers

have not paid much attention to changing greenhouse

gases (GHG). In a 2-week forecast this may seem ac-

ceptable at first thought. Indeed, the National Centers

for Environmental Prediction (NCEP) Global Forecast

System as of 2008 still employed a 1988 GHG concen-

tration, so the need for updating GHGS in the model

apparently must have seemed low (an update is planned

for 2009). In most cases short-term climate prediction

(or long-range weather prediction as it used to be

called) is the outgrowth of technology employed origi-

nally for numerical weather prediction so the earliest of

such climate prediction efforts neglected to address

changing GHGs. Currently, few operational weather and

climate forecast centers use coupled climate models with

time-evolving GHG concentrations for their operational

seasonal climate predictions. The assumption behind

such a configuration, other than tradition, is that the

global warming signal contained in the initial conditions

will largely remain unchanged during the forecast target

period, which typically ranges from a few days to several

months to one year at most.

As of 2008, the years 1998, 2005, and 2007 ranked as the

warmest three years and the average of the last 10 years

(1998–2007) is the warmest decade in the instrumental
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record of global mean surface air temperatures since 1850

(Trenberth et al. 2007; Levinson and Lawrimore 2008;

Hansen et al. 2007). The multidecade-long Intergovern-

mental Panel on Climate Change climate simulations,

which do change GHGs, suggest that the record-

breaking global warmth in the last decade is a contin-

uation of the upward warming trend observed since

the mid–twentieth century in response to the increase

of GHGs (Hegerl et al. 2007; Hoerling et al. 2007;

Solomon et al. 2007). However, the warming trend may

not be captured by climate models for seasonal climate

predictions because of the usage of a constant and

outdated concentration of GHGs. This omission is be-

coming one of the main factors contributing to cold

biases in the seasonal forecasts of the global mean sur-

face temperature (Doblas-Reyes et al. 2006; Liniger

et al. 2007). In practice, the operationally issued public

seasonal predictions attempt to take the warming trend

into consideration by employing empirical tools, such as

the optimal climate normal method (Huang et al. 1996)

as used at the Climate Prediction Center (CPC) since

the mid-1990s. Climate trends as expressed by optimal

climate normals (OCN) have come to dominate real-

time U.S. seasonal prediction over the last 10 years. The

fundamental questions are to what extent the global

warming signal is lost in the seasonal dynamical forecast

with constant GHG concentration and what are the im-

pacts of the loss of global warming on seasonal forecast

skill, even on a regional scale? Essentially, the issue at

hand is whether we need to do dynamical seasonal pre-

dictions with a climate model as an initial-value (in-

cluding ocean!) problem subject to the influence of

increasing GHGs (Smith et al. 2007).

In this study, we analyze the 25-yr (1982–2006) retro-

spective seasonal climate predictions made recently by

NCEP’s Climate Forecast System (CFS), which has a

constant GHG concentration fixed at the 1988 level

(Saha et al. 2006), and compare the CFS forecasts to their

initial conditions, which are (a) the NCEP–Department

of Energy Atmospheric Model Intercomparison Project

(AMIP-II) reanalysis (R-2) data (Kanamitsu et al. 2002)

for the atmosphere and land and (b) the Global Ocean

Data Assimilation System (GODAS) for the ocean

(Behringer and Xue 2004). We will focus on the analysis

of the decay of the global warming signal in 2-m surface

air temperature (SAT) with forecast lead time and ex-

plore the potential of seasonal climate predictability

arising from the long-term warming trend. Note that we

do not have a set of model forecasts that includes the

GHG effect. Having such runs available would allow us

to, as did Doblas-Reyes et al. (2006) and Liniger et al.

(2007), compare model states with and without GHG

increases. Instead, we compare reality (subject to GHG

increases) to model states with constant GHGs but re-

alistic initial states.

Our analysis can also be considered as an alternate

way to reveal the effects of anthropogenic GHGs. The

advantage of this alternative method is that, by virtue of

including the warming signal in the initial conditions,

this approach could isolate anomalies in individual years

that are due to the natural variability of the climate sys-

tem from the response to anthropogenic GHGs, pro-

vided that the climate models for dynamical seasonal

forecasts have a relatively good level of skill for high-

frequency interannual natural climate variability.

2. Some technical details

The atmospheric component of the CFS is the NCEP

Global Forecast System with a spectral truncation of

62 waves (T62) in the horizontal plane (equivalent to

nearly a 200-km grid) and a finite differencing in the

vertical direction with 64 layers. The oceanic compo-

nent is the Geophysical Fluid Dynamics Laboratory

Modular Ocean Model, version 3 (MOM3; Pacanowski

and Griffies 1998). The domain of MOM3 is quasi

global, extending from 748S to 648N. The atmospheric

and oceanic components are coupled without any flux

adjustment. Full interaction between atmospheric and

oceanic components is confined to 658S–508N. Poleward

of 748S and 648N, SSTs experienced by the atmospheric

component are taken from the observed climatology.

Between 748 and 658S, and between 648 and 508N, SSTs

for the atmospheric component are the weighted average

of the observed climatology and that from MOM3. Sea

ice extent is prescribed from the observed climatology.

For each initial month, 15 ensemble forecast mem-

bers were produced by the CFS for forecasts with lead

times from 1 through 9 months. As described in Saha

et al. (2006), the 15 members are produced by starting

integrations from the 5 days surrounding the 0000 UTC

states on the 1st, 11th, the 21st days of the previous

month. The ensemble mean of the 15 forecast members

for each of the nine monthly lead times is regarded as a

monthly CFS forecast. We organize the monthly fore-

casts with the same lead time into a time series of 25-yr

monthly forecasts based on their verification times (month

and year). Together with the monthly mean SAT fields

derived from the R-2 (which are referred to as observa-

tions), we have a total of 10 time series of monthly SAT

fields (1 from the observations and the remaining 9 from

the monthly forecasts with lead times of 1–9 months). For

each of the 10 monthly time series, the yearly mean fields

are obtained by averaging across 12 calendar months

within the same year, which gives rise to 10 time series of

annual means for the period of 1982–2006. The yearly
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anomalies of forecasts and observations are taken as the

departures from their corresponding 25-yr averages.

We are aware that the trends in R-2 have been ques-

tioned because (i) very few surface data are assimilated

and (ii) the model component of the data assimilation

system does not have the temporally increasing GHGs as

do the observations. However, the theoretical work by

Cai and Kalnay (2005) shows that a reanalysis system

could recover the trend present in the assimilated ob-

servations even if the model component of the reanalysis

system has a constant concentration of GHGs. Never-

theless, the reanalysis trend could be somewhat smaller

than the trend in the observations. To assess the defi-

ciency of the trend in the R-2 initial states used by the

CFS model, we therefore have also compared R-2 with

the Global Historical Climatology Network–Climate

Anomaly Monitoring System (GHCN–CAMS) global

land surface air temperature analysis (Fan and Van den

Dool 2008). It is found that the warming trend averaged

over global land between 648S and 648N using the R-2

[0.24 K (10 yr)21] is about one-third weaker than in the

GHCN–CAMS [0.36 K (10 yr)21], but keep in mind that

this comparison applies over land only.

3. Results

Figure 1 compares the time series of the yearly and

global mean anomalies of SAT derived from the R-2

(i.e., the initial conditions for the CFS forecasts) and the

ensemble mean of CFS forecasts with lead time ranging

from 1 to 9 months. The black line in Fig. 1 shows the

R-2’s gradual upward trend in global mean SAT, with

potent interannual variations superimposed. It is evi-

dent that the CFS forecasts at all of the nine lead times

tend to follow both the upward trend and the observed

higher-frequency ups and downs throughout the 25-yr

period, implying that the CFS is capable of capturing

the dominant signal of the interannual variability of

the yearly global mean SAT anomalies. However, there

exists a noticeable time-dependent discrepancy between

the CFS forecasts and the observations. It is seen that

whereas the global mean SAT anomalies in the CFS

forecasts tend to be warmer than the observations before

1988, the CFS is colder than the observations afterward

(except briefly between 1992 and 1994, during which time

the CFS forecasts are warmer than the observations by as

much as 0.358C). Such a discrepancy between the CFS

forecasts and the observations is consistent with the lack

of a temporally evolving atmospheric composition in

the CFS. Specifically, the warm bias (relative to R-2) in

the CFS forecasts prior to 1988 coincides with the ex-

cessive amount of GHG concentration specified in the

CFS hindcasts. The warm bias in the CFS forecasts during

1992–94 overlaps with the period of the temporary global

cooling in 1992–94 that was due to the anomalous aero-

sols released from the 1991 Mount Pinatubo eruption

FIG. 1. The time series of the global average SAT anomalies (8C) of observations or R-2

analysis (black) and CFS forecasts at various lead times (colors). Anomalies are relative to the

1982–2006 mean.
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(Hansen et al. 1992). The cold bias (relative to R-2) in

the CFS forecasts after 1994, on the other hand, appears

to be associated with the insufficient GHGs in the CFS

model, which remained fixed at the 1988 concentration

level out to 2006. Figure 1 also shows that the discrep-

ancy between the CFS forecasts and R-2-based obser-

vations is more pronounced at a longer lead time. This is

consistent with the lack of the evolving atmospheric

composition in the CFS that would lead to a larger bias

as the forecast lead time increases because whatever the

CFS ‘‘knows’’ about global warming comes only from

the information contained in the time series of its initial

conditions, and this information is not maintained during

the forecast.

Here, one may question whether the model drift in-

fluences the trends as shown in Fig. 1. Although there is

significant model drift, we believe that we have elimi-

nated that drift from the estimate of the model’s climate

trend by organizing the model data by fixed forecast

leads; that is, all forecasts at the same lead time are suf-

fering from the same amount of drift when calculating

the trend.

As mentioned above, in addition to the constant

GHG concentration fixed at the 1988 level, the sea

surface temperatures (SST) over the region poleward of

748S and 648N in the CFS were taken from the observed

climatology instead of being predicted. As a result, the

lack of the warming trend in the region poleward of 748S

and 648N in the CFS forecasts cannot, with certainty, be

attributed to the CFS’s fixed GHG concentration level

only. For this reason, in Fig. 2, we only show the linear

trends obtained by averaging data over the domain

between 648S and 648N. It is seen that the global SAT,

derived from the R-2, has a linear warming trend of

about 0.148C (10 yr)21 from 1982 to 2006, which is

consistent with other estimates (Trenberth et al. 2007).

The warming over land in R-2 [about 0.248C (10 yr)21]

is more than 2 times as large as that seen in SAT over

the ocean [about 0.0958C (10 yr)21]. Clearly, the CFS

forecasts cannot maintain the warming trends seen in

the initial conditions. The warming trends in the CFS

forecasts diminish rapidly as the forecast lead time in-

creases, consistent with the fixed GHG concentration in

the CFS model, but they have not disappeared com-

pletely at 9-month lead time. In terms of the global

mean SAT, the warming trend in the CFS forecasts at

9-month lead time is less than one-third (29%) of that in

the initial conditions. Another important feature, very

surprising perhaps, is that the fading of the warming

trend in the CFS forecasts with lead time is faster over

the ocean (despite its high thermal capacity) than that

over land. At the 9-month lead time, the warming trend

FIG. 2. Linear trends of the SAT anomalies [8C (10 yr)21] averaged over 648S and 648N

derived from observations or analysis (lead time of 0) and from the CFS forecasts (lead time of

1–9 months). Global: all grids between 648S and 648N; land: all land grids between 648S and

648N; ocean: all ocean grids over 648S and 648N; EOF1: the temperature trend is derived from

the R-2-derived EOF1 pattern shown in Fig. 4a, below. The green histogram, for lead time of 0

only, represents the upper ocean, i.e., is based on water temperatures at 5-m depth as analyzed

in GODAS.
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over the ocean in the CFS forecasts is only about one-

quarter (22.5%) of that in the initial conditions, whereas

the warming trend over land in the CFS forecasts is

still about one-third (35.6%) of the land warming trend

in the initial conditions. Figure 2 also shows that the

warming trend in the ocean initial conditions as esti-

mated from GODAS [about 0.0768C (10 yr)21] is nearly

as large as that of the SAT over the ocean. This essen-

tially rules out the possibility that the rapid diminish-

ment of the SAT warming trend in the CFS forecasts

over the oceans is due to the lack of a warming trend in

the ocean initial conditions produced by GODAS in the

CFS. This further strengthens our conjecture that the

fading of the warming trend initially present in the CFS

is due to the absence of the time-evolving GHG con-

centration in the CFS. Our results are broadly consis-

tent with recent findings obtained with the European

Centre for Medium-Range Weather Forecasts coupled

seasonal forecast model (Doblas-Reyes et al. 2006;

Liniger et al. 2007).

We next evaluate the skill of the CFS seasonal climate

forecasts using the traditional map anomaly correlation

(AC) between the SAT anomalies in the observations

and the CFS forecasts with and without the global

warming trend signal present. Shown in Fig. 3a is the

AC of the CFS forecasts of the yearly SAT anomalies as

a function of the verification time and the lead time. It is

seen that the CFS forecasts have remarkably high skill

at all nine of the lead times in the years between 1982

and 1989 and between 1996 and 2000 (the left-top panel

in Fig. 3). On average, the CFS forecasts have good

skill (AC . 0.4) up to the 5-month lead time (the right

panel in Fig. 3a). For later reference, 95% confidence

error bars are shown (in all right-hand panels of Fig. 3)

around the AC die-off curve. The error bars are based

on assuming 50 degrees of freedom for temperature on a

global domain [see Van den Dool and Chervin (1986)

for such estimates]. To explore to what extent the skill

of the CFS forecasts in Fig. 3a has benefited from

the global warming signal in the initial conditions, we

examine the CFS forecasts under two hypothetical sit-

uations: one with (experiment ‘‘as is’’) and the other

without (by filtering) the global warming trend. We use

empirical orthogonal function (EOF) analysis to isolate

the spatial pattern of the global warming signal from the

interannual variability in the annual mean SAT anom-

aly field. It turns out that it is only the first EOF mode,

which is derived from global R-2 data (shown in Fig. 4),

and which explains about 30% of the total variance of

the yearly mean SAT anomalies between 1982 and 2006,

that exhibits a pronounced upward trend (Fig. 4b). The

reconstructed global mean observed SAT associated

with just the first EOF yields an upward trend of about

0.1458C (10 yr)21, which is nearly identical to the global

warming trend derived from the whole dataset (the

white-colored vs orange-colored bars in Fig. 2 at the

initial time). The spatial pattern of the global warming

mode (Fig. 4a) exhibits a familiar warming pattern,

showing a larger warming in high latitudes and over

land as documented in the literature (Trenberth et al.

2007). We have also verified that the pattern shown in

Fig. 4a is very similar to the difference between the

averages of 1997–2006 and 1981–1992 (not shown here),

suggesting that the pattern in Fig. 4a is representative of

the global warming pattern.

We construct the dataset for the first hypothetical

situation in which both the observations and CFS fore-

casts would have the global warming signal removed by

SATno-trend(s, t; t) 5 SAT(s, t; t)� a(t)(t � 1988)

3 EOF
1
(s), (1)

where s and t denote spatial location and time (t runs

from 1982 to 2006), t is the forecast lead time (t 5 0

corresponds to the initial state and t 5 n corresponds to

the n-month lead time for n 5 1, 2, . . . , 9), EOF1(s) is

the observed global warming pattern shown in Fig. 4a,

and a(t) is the linear trend portion of the projection of

SAT(s, t; t) onto EOF1(s) [e.g., a(t 5 0) corresponds to

both the slope of the red line in Fig. 4b and the height of

the white colored bar in Fig. 2]. In the second hypo-

thetical situation, we consider a hypothetical climate

model that otherwise would be identical to the CFS

model except that it would capture the observed global

warming pattern exactly (a perfect trend model). The

‘‘forecasts’’ of the hypothetical ‘‘perfect trend model’’

are constructed according to

SATperfect-trend(s, t; t) 5 SAT(s, t; t)

1 [a(t 5 0)� a(t)](t � 1988)

3 EOF
1
(s), (2)

where all of the notations on the right-hand side of

Eq. (2) are identical to those in Eq. (1). Obviously, the

procedure in Eq. (2) should have no effect on the data

for lead 0, or in 1988 for any lead. This implies that the

1988 AC skills in these two hypothetical situations are

identical to what is shown in Fig. 3a. The choice of 1988

implicitly assumes that the CFS forecasts made in 1988

would not suffer the biases caused by the lack of the up-

dated GHG concentration because the CFS’s GHGs are

kept at the 1988 level. We have also used different years

instead of 1988 and found that the basic characteristics of

the results shown in Figs. 3b and 3c remain unchanged.
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FIG. 3. The AC skill of the forecasts as a function of the verification time (abscissa, year) and lead time (ordinate,

month). The panels on the right show the AC skill averaged over all 25 yr. (a) CFS forecasts; (b) hypothetical

forecasts using Eq. (1); (c) hypothetical forecasts using Eq. (2). The dashed curves in the right-hand panels of (b) and

(c) correspond to the curve in the right-hand panel of (a). The 95% confidence bars are shown around the AC die-off

curve in all right-hand panels.
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It is shown in Fig. 3b that the skill of the ‘‘no trend’’

CFS forecasts at all of the nine lead times (verified

against ‘‘detrended’’ observations) is nearly as good as

that of the actual CFS forecasts against the total ob-

served anomaly that includes the trend (Fig. 3a) in the

years from 1982 to 2000 but becomes noticeably worse

after 2000. The comparable level of skill shown in Figs. 3a

and 3b before 2001 implies that the skill of the CFS

forecasts mainly comes from the CFS’s ability to cap-

ture interannual variability, such as the El Niño/La Niña

events in 1982/82, 1986/87, 1988/89, 1991/92, and 1997/98

(Wang et al. 2005). The warming-trend signal in the

initial conditions contributes only a little to the skill of

the CFS forecasts prior to 2000. Because both Figs. 3a

and 3b show relatively poor skill in the period of 1992–95,

the main reason of the poor skill in this period is likely

the absence (in the CFS model) of the anomalous aero-

sols released from the 1991 Mount Pinatubo eruption.

The noticeable downturn in skill between 2001 and 2006

in Fig. 3b suggests that the skill of the CFS forecasts in

this period shown in Fig. 3a is because the warming signal

in the initial conditions is maintained into the forecast.

It is also the lack of large-amplitude El Niño/La Niña

events between 2001 and 2006 that causes a somewhat

poor performance of the CFS in this period because

apart from the global warming signal in the initial con-

ditions the CFS’s seasonal climate prediction skill has to

come mainly from its ability to capture the ENSO signal

(Wang et al. 2005).

In Fig. 3c, we plot the AC of the hypothetical perfect-

trend model, constructed using Eq. (2). In comparison

with Fig. 3a, the inclusion of the perfect global warming

signal in the CFS forecasts would have improved the

forecasts significantly in most years, but especially and

suddenly post-1998. The average AC skill of the CFS

seasonal climate forecasts would still be above 0.3 at the

9-month lead should the CFS model capture the linear

part of the global warming trend exactly. If we exclude

the years between 1992 and 1995, the average AC of the

hypothetical perfect-trend model is as high as 0.45 at

FIG. 4. The first EOF mode of the yearly SAT anomalies in R-2: (a) the spatial

pattern and (b) the time series of the first EOF mode (black; the red curve is its linear

trend). The units are arbitrary, but the product of EOF and the time series yields

degrees Celsius.
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9-month lead time. Furthermore, because the CFS’s

original forecasts in 1997/98 are already very good

(AC . 0.5 at 8-month lead time), the further improve-

ment of the seasonal forecast skill by including the full-

strength global warming signal suggests that both the

1997/98 El Niño event and the anthropogenic GHGs to-

gether contribute to the record-breaking global warmth

in 1998. In contrast, the record-breaking global warmth

since 2001 is more likely due to the direct impact of in-

creasing GHGs because without the updated GHGs and

in the absence of the large-amplitude El Niño/La Niña

events, the CFS has little skill in the years between 2001

and 2006.

What we see, with reference to the die-off curves on

the rhs of Fig. 3, is that taking out the model’s trend (cf.

Figs. 3a and 3b), imperfect as it may be, reduces the skill

on average, and more significantly so at short leads.

What we see next (cf. Figs. 3c and 3b) is that inserting

the observed linear trend into the model forecast im-

proves the skill, and more significantly so at the longer

leads. This all makes perfect sense.

4. Conclusions

Our analysis suggests that an adequate representation

of the anthropogenic GHGs in coupled climate models

for seasonal forecasts has become essential for more

accurate seasonal climate predictions, even at the re-

gional level. While climate trends may be present in the

initial state of models with fixed GHGs, this trend erodes

to 30% in about 9 months, as revealed by studying a set

of 25 years of hindcasts by NCEP’s CFS model. Sur-

prisingly, the warming trend in surface air temperature

over the ocean is lost just as fast (if not faster) than over

land. The official National Weather Service seasonal

predictions have recognized the impact of global warm-

ing on the seasonal forecast skill a long time ago and

introduced an empirical trend tool [called optimal cli-

mate normals by Huang et al. (1996)] to explicitly take

the warming trend into consideration in the seasonal

climate predictions released by CPC. The inclusion of

temporally evolving GHGs is planned at NCEP for the

next CFS (accompanied by new hindcasts back to 1982)

in 2010. Nevertheless, a set of seasonal climate predic-

tions made with a fixed concentration of GHGs, if af-

fordable, would still be useful and might actually help

in determining the association between individual ex-

treme events (a severe heat wave, a drought event, or a

record-breaking global warmth year) and the increase

in GHGs.

Although this paper has ostensibly been about sea-

sonal prediction, the problem of climate change, ob-

served temperature trends, and GHG touches obviously

upon much longer time scales than the 9-month pre-

dictions made by the CFS model. Indeed, seasonal to

interannual forecasts are linked to decadal forecasts

(e.g., Cox and Stephenson 2007) and could be made by

the same technology, whether it be a model like CFS

(with increasing GHGs) or empirical methods like OCN

(Huang et al. 1996).
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