

Madden-Julian Oscillation: Recent Evolution, Current Status and Predictions

Update prepared by Climate Prediction Center / NCEP August 29, 2011

- Overview
- Recent Evolution and Current Conditions
- MJO Index Information
- MJO Index Forecasts
- MJO Composites

- The MJO index amplitude increased during the past week and indicated a propagation eastward into the eastern Indian Ocean.
- Most dynamical model MJO index forecasts indicate a weakening of this signal early in the Week-1 period.
- Based primarily on the above MJO index model forecasts, the MJO is forecast to remain generally weak.
- The MJO is not expected to contribute substantially to anomalous convection across the global tropics during the period.

Additional potential impacts across the global tropics are available at: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php

Note that shading denotes the zonal wind anomaly

Blue shades: Easterly anomalies

<u>Red shades</u>: Westerly anomalies

Easterly wind anomalies were interrupted by tropical cyclone activity for portions of the northwest Pacific. Westerly anomalies continued across the tropical Atlantic and strengthened across the east Pacific.

850-hPa Zonal Wind Anomalies (m s⁻¹)

Westerly anomalies (orange/red shading) represent anomalous west-to-east flow

Easterly anomalies (blue shading) represent anomalous east-to-west flow

Easterly anomalies have persisted in the west-central Pacific since January (black box) consistent with La Nina conditions. The magnitude of these anomalies, however, has gradually weakened over the period and shifted slightly eastward over time.

A burst of westerly wind anomalies associated with the MJO moved across the Pacific in early-to-mid May.

Westerly anomalies developed across the western Pacific centered near 150E during the second half of July.

OLR Anomalies – Past 30 days

OLR Anomalies 30 JUL 2011 to 8 AUG 2011

NO ATMOSPHE

NOAA

ARTMENT OF CO

NASIONAL

9 AUG 2011 to 18 AUG 2011

19 AUG 2011 to 28 AUG 2011

Drier-than-normal conditions, positive OLR anomalies (yellow/red shading)

Wetter-than-normal conditions, negative OLR anomalies (blue shading)

During early August, enhanced convection (blue circle) shifted north across the subtropical western Pacific, with suppressed convection expanding northeast across the Maritime Continent.

During mid-August, suppressed convection continued across Indonesia and developed across the western Pacific. Enhanced convection was evident across parts of Africa and the Indian Ocean.

During late August enhanced convection was associated with an increase in tropical cyclone activity across the Atlantic, east Pacific, and west Pacific. The Indian Monsoon became more active noted by the enhanced convection in this area.

Outgoing Longwave Radiation (OLR) Anomalies (7.5°S-7.5°N)

Drier-than-normal conditions, positive OLR anomalies (yellow/red shading)

Wetter-than-normal conditions, negative OLR anomalies (blue shading)

(Courtesy of the Cooperative Institute for Climate and Satellites (CICS-NC) and NCDC)

During late April, areas of enhanced convection propagated eastward followed by suppressed convection thereafter. This activity was in part associated with MJO activity.

During mid-June, a couplet of suppressed (enhanced) convection was evident and centered near 80E (140E).

In early August, enhanced convection intensified and has persisted near 60E.

Time

200-hPa Velocity Potential Anomalies (5°S-5°N)

<u>Positive</u> anomalies (brown shading) indicate unfavorable conditions for precipitation

<u>Negative</u> anomalies (green shading) indicate favorable conditions for precipitation

Eastward propagation of anomalies was observed during March associated with weak MJO activity.

Robust MJO activity was observed during late April into May as upper-level divergence (green shades) shifted eastward from the Indian Ocean beginning in early May followed by upper-level divergence (brown shades).

During parts of June, July and August very fast eastward propagation was evident and mainly associated with higher frequency sub-seasonal coherent tropical variability.

Anomalies increased in magnitude and in coverage during late August.

IR Temperatures (K) / 200-hPa Velocity Potential Anomalies

<u>Positive</u> anomalies (brown contours) indicate unfavorable conditions for precipitation

<u>Negative</u> anomalies (green contours) indicate favorable conditions for precipitation

The large scale velocity potential indicates a more coherent pattern. Anomalous upper-level divergence is indicated over the Atlantic, Africa, Indian Ocean, South Asia, and northwest Pacific. Anomalous upper-level convergence is observed across mainly the central Pacific Ocean.

ND ATMOSPHE

NOAA

Note that shading denotes the zonal wind anomaly

<u>Blue shades</u>: Easterly anomalies

<u>Red shades</u>: Westerly anomalies

Westerly anomalies continue to strengthen across the central Pacific over the last 5 days (red box).

200-hPa Zonal Wind Anomalies (m s⁻¹)

Westerly anomalies (orange/red shading) represent anomalous west-toeast flow

Easterly anomalies (blue shading) represent anomalous east-to-west flow

Westerly anomalies persisted across a large area from the Maritime Continent to the central Pacific (black solid box) since November.

Significant eastward propagation of westerly anomalies was evident in late April and May (dashed line) associated with the MJO.

During mid-August, easterly anomalies developed near the Date Line.

Since mid-August, westerly anomalies have returned to the central Pacific.

ND ATMOSPHE

Beginning in April 2010 positive heat content anomalies decreased across the Pacific in association with the upwelling phase of a Kelvin wave and later during the early summer due to the development of La Nina.

Since the beginning of January 2011, positive heat content anomalies shifted eastward, while negative heat content anomalies weakened and then became positive across much of the Pacific basin.

An oceanic Kelvin wave (dashed line) shifted eastward during February and March 2011. Much of the Pacific basin now indicates above- or near-normal integrated heat content.

Since the beginning of August, negative heat content anomalies increased across the equatorial central Pacific.

MJO Index -- Information

• The MJO index illustrated on the next several slides is the CPC version of the Wheeler and Hendon index (2004, hereafter WH2004).

Wheeler M. and H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, *Monthly Weather Review*, 132, 1917-1932.

• The methodology is very similar to that described in WH2004 but does not include the linear removal of ENSO variability associated with a sea surface temperature index. The methodology is consistent with that outlined by the U.S. CLIVAR MJO Working Group.

Gottschalck et al. 2010: A Framework for Assessing Operational Madden-Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project, *Bull. Amer. Met. Soc.*, 91, 1247-1258.

• The index is based on a combined Empirical Orthogonal Function (EOF) analysis using fields of near-equatorially-averaged 850-hPa and 200-hPa zonal wind and outgoing longwave radiation (OLR).

MJO Index -- Recent Evolution

• The axes (RMM1 and RMM2) represent daily

MJO Index – Historical Daily Time Series

INCAND ATMOSPHE

Time series of daily MJO index amplitude from 1997 to present. Plots put current MJO activity in historical context.

Ensemble GFS (GEFS) MJO Forecast

<u>Yellow Lines</u> – 20 Individual Members <u>Green Line</u> – Ensemble Mean

RMM1, RMM2] 15-day forecast for 29Aug2011 to 12Sep2011 Western 6 Pacific NCEP GEFS 3 2 5 8 Hem Maritime Continent RMM2 West START 4 -3 Indian 2 3 Ocean -2 -3 2 3 0 -1 RMM1

RMM1 and RMM2 values for the most recent 40 days and forecasts from the ensemble Global Forecast System (GEFS) for the next 15 days

<u>light gray shading</u>: 90% of forecasts <u>dark gray shading</u>: 50% of forecasts

The ensemble GFS forecasts indicate a weakening MJO signal.

Ensemble Mean GFS MJO Forecast

Figures below show MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.)

Spatial map of OLR anomalies for the next 15 days

NO ATMOSPHER

NOAA

MENT OF CO

NAVIONAL

20N

10N EQ-

10S 205 305

30N

20N 10N EQ-

10S

205 305

30N 20N

> 10N EQ-

105

205 30S

30N 20N 10N EQ-

105

205

Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days

Constructed Analog MJO Forecast

Figure below shows MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.)

NO ATMOSPHE

NOAA

TMENT OF C

NATIONAL

20N

10N -EQ

105 205 305

30N

20N 10N

> EQ-10S -

205 305

30N 20N 10N

> EQ-105-

205 305

30N 20N 10N-EQ-

105

205

Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days

OLR prediction of MJO-related anomalies using CA model Reconstructed anomaly field associated with the MJO using RMM1 & RMM2 reconstruction by RMM1 & RMM2 (28 Aug 2011) OLR [7.5°S,7.5°N] (cint:4Wm-*) Period:26-Feb-2011 to 28-Aug-2011 The unfilled contours are CA forecast reconstructed anomaly for 15 days MAR2011 Initial Date (28 Aug 2011) 9 NF 150E 150W 120W 9ÓW 6óW 30W 180 APR2011 Days 1-5 Ave Forecast 90E 120E 150E 180 150W 120% 90% 8ÔW 3000 MAY2011 Days 6-10 Ave Forecast JUN2011 90E 6ÓW 30W 30E BÔE 120E 150E 180 150W 120W 90% Days 11-15 Ave Forecast JUL2011 150W 1505 120% 9ÓW €Ó₩ The CA forecast indicates enhanced AUG2011 (suppressed) convection during Week-1 for the Indian Ocean (western Pacific) with some extension of enhanced convection to the SEP2011 Maritime Continent during Week-2. 3ÔF 6ÔE 90F 120F 150F 150W 120W 904 8ÔW 3ÓW 180

MJO Composites – Global Tropics

850-hPa Wind Anomalies (May-Sep)

IN AND ATMOSPHER

NOAA

NAVIONAL

۲

Precipitation Anomalies (May-Sep)

<u>U.S. MJO Composites – Temperature</u>

 Left hand side plots show temperature anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Blue (orange) shades show negative (positive) anomalies respectively.

 Right hand side plots show a measure of significance for the left hand side anomalies.
Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level.

Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml

U.S. MJO Composites – Precipitation

Left hand side plots show
precipitation anomalies by
MJO phase for MJO events
that have occurred over the
three month period in the
historical record. Brown
(green) shades show negative
(positive) anomalies
respectively.

 Right hand side plots show a measure of significance for the left hand side anomalies.
Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level.

Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml