Madden-Julian Oscillation: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP January 23, 2012 #### <u>Outline</u> - Overview - Recent Evolution and Current Conditions - MJO Index Information - MJO Index Forecasts - MJO Composites #### **Overview** - The MJO remained weak during the past week. - La Nina conditions and other subseasonal tropical variability continued to contribute most to the patterns of anomalous convection in the global Tropics. - The amplitude of the MJO index has increased in recent days. Dynamical model MJO index forecasts show the MJO signal maintaining its current amplitude during the next week with eastward propagation from the Maritime continent to the western Pacific. - Based on the latest observations and model forecasts, the MJO is forecast to be active during the upcoming 1-2 weeks. It is unclear at the current time whether this activity will become a long-lived event, or rather show an evolution more similar to the subseasonal activity of late December and early January. - The MJO is forecast top contribute to enhanced convection across the Maritime continent and parts of the western Pacific and South Pacific Convergence Zone (SPCZ) during the next two weeks. Additional potential impacts across the global tropics are available at: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/index.php ### 850-hPa Vector Wind Anomalies (m s⁻¹) Note that shading denotes the zonal wind anomaly **Blue shades:** Easterly anomalies Red shades: Westerly anomalies Westerly wind anomalies continued over the equatorial Indian Ocean during the past five days. Easterly anomalies further weakened over the equatorial Pacific. Westerly wind anomalies continued over the east Pacific Ocean. #### 850-hPa Zonal Wind Anomalies (m s⁻¹) 16 14 12 10 8 6 2 0 -2 -6 -8 -10 -16 Westerly anomalies (orange/red shading) represent anomalous west-to-east flow Easterly anomalies (blue shading) represent anomalous east-to-west flow In early October, MJO activity weakened the persistent easterly anomalies across the central Pacific (first dashed line). An equatorial Rossby wave imparted westerly anomalies across parts of the western Pacific and Maritime continent during late October and early November (thin solid line). MJO activity continued into December (altering dashed and dotted lines), but most recently westerly (easterly) wind anomalies across the Indian Ocean (western Pacific) have become more stationary. In mid-January, interaction with the extratropics contributed to decreased easterlies. Time 1N0V2011 16NOV2011 1DEC2011 6DEC2011 1JAN2012 16JAN2012 1DOE 120E 140E Longitude 160E 1 BOW 120W 100W #### OLR Anomalies – Past 30 days 1 JAN 2012 to 10 JAN 2012 11 JAN 2012 to 20 JAN 2012 Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) During the end of December, enhanced convection (blue circle) developed near the Philippines, the Maritime continent and the South Pacific Convergence Zone (SPCZ). Suppressed convection (red circle) continued near the Date Line. Enhanced convection continued into the beginning of January from the Maritime Continent to the SPCZ, while suppressed convection developed over the equatorial Indian Ocean. During mid-January, much drier conditions became apparent over the Maritime Continent, and a less coherent convective pattern was observed over the Indian Ocean. # Outgoing Longwave Radiation (OLR) Anomalies (7.5°S-7.5°N) Drier-than-normal conditions, positive OLR anomalies (yellow/red shading) Wetter-than-normal conditions, negative OLR anomalies (blue shading) (Courtesy of CAWCR Australia Bureau of Meteorology) Beginning in mid-September, enhanced convection shifted from southern Asia to the western Pacific while suppressed convection developed during late September across India and also shifted eastward to the western Pacific. MJO activity continued into early December, then OLR anomalies decreased and eastward propagation was not clear. During late December, eastward propagation of OLR anomalies was indicated once again with suppressed convection across the Indian Ocean during the first week in January. Time Longitude ## **200-hPa Velocity Potential Anomalies (5°S-5°N)** <u>Positive</u> anomalies (brown shading) indicate unfavorable conditions for precipitation <u>Negative</u> anomalies (green shading) indicate favorable conditions for precipitation During July and August very fast eastward propagation was evident at times and mainly associated with higher frequency sub-seasonal coherent tropical variability not associated with MJO activity. Beginning in the second half of September into December, alternating negative (dashed lines) and positive (dotted lines) anomalies were evident and associated with MJO activity during the period. Eastward propagation of anomalies became less coherent during January and most recently, anomalies became very weak. Longitude ## IR Temperatures (K) / 200-hPa Velocity Potential Anomalies <u>Positive</u> anomalies (brown contours) indicate unfavorable conditions for precipitation <u>Negative</u> anomalies (green contours) indicate favorable conditions for precipitation The latest large scale velocity potential pattern indicates a somewhat more coherent pattern in recent days. Positive anomalies over the western hemisphere are weak, while upper-level divergence has increased over Indonesia. #### 200-hPa Vector Wind Anomalies (m s⁻¹) Note that shading denotes the zonal wind anomaly Blue shades: Easterly anomalies **Red shades: Westerly anomalies** Large scale cyclonic circulations are evident both north and south of the equator near the Date Line. During the past five days, westerly anomalies persisted over parts of the east Pacific. Westerly anomalies strengthened in the west-central Pacific. #### 200-hPa Zonal Wind Anomalies (m s⁻¹) Westerly anomalies (orange/red shading) represent anomalous west-toeast flow Easterly anomalies (blue shading) represent anomalous east-to-west flow Westerly anomalies persisted across a large area from the Maritime Continent to the central Pacific (black solid box) during much of the period prior to mid-September. Alternating westerly (dashed lines) and easterly (dotted lines) anomalies are evident from mid-September into December associated with the MJO. Westerly anomalies over the Pacific strengthened during early-to-mid **December with some eastward** propagation evident. Most recently, westerly anomalies have persisted the primarily over the western hemisphere. Time Longitude Time # Weekly Heat Content Evolution in the Equatorial Pacific EQ. Upper-Ocean Heat Anoms. (deg C) Since the beginning of January 2011, positive heat content anomalies shifted eastward, while negative heat content anomalies weakened and then became positive across much of the Pacific basin. An oceanic Kelvin wave (dashed line) shifted eastward during February and March 2011. Much of the Pacific basin now indicates above- or near-normal integrated heat content. Since late July, negative heat content anomalies are evident across the equatorial central and eastern Pacific. Longitude #### **MJO Index -- Information** • The MJO index illustrated on the next several slides is the CPC version of the Wheeler and Hendon index (2004, hereafter WH2004). Wheeler M. and H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, *Monthly Weather Review*, 132, 1917-1932. • The methodology is very similar to that described in WH2004 but does not include the linear removal of ENSO variability associated with a sea surface temperature index. The methodology is consistent with that outlined by the U.S. CLIVAR MJO Working Group. Gottschalck et al. 2010: A Framework for Assessing Operational Madden-Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project, *Bull. Amer. Met. Soc.*, 91, 1247-1258. • The index is based on a combined Empirical Orthogonal Function (EOF) analysis using fields of near-equatorially-averaged 850-hPa and 200-hPa zonal wind and outgoing longwave radiation (OLR). #### **MJO Index -- Recent Evolution** - The axes (RMM1 and RMM2) represent daily values of the principal components from the two leading modes - The triangular areas indicate the location of the enhanced phase of the MJO - Counter-clockwise motion is indicative of eastward propagation. Large dot most recent observation. - Distance from the origin is proportional to MJO strength - **■** Line colors distinguish different months Since the beginning of January, the MJO index was fairly week with no eastward propagation. In recent days, the amplitude has increased across the Maritime continent. #### **MJO Index – Historical Daily Time Series** Time series of daily MJO index amplitude from 1997 to present. Plots put current MJO activity in historical context. #### **Ensemble GFS (GEFS) MJO Forecast** <u>Yellow Lines</u> – 20 Individual Members <u>Green Line</u> – Ensemble Mean RMM1 and RMM2 values for the most recent 40 days and forecasts from the ensemble Global Forecast System (GEFS) for the next 15 days <u>light gray shading: 90% of forecasts</u> dark gray shading: 50% of forecasts The ensemble GFS forecasts an eastward propagating signal with the enhanced phase shifting from the Maritime Continent to the western Pacific by the end of Week-2. #### **Ensemble Mean GFS MJO Forecast** Figures below show MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) #### Spatial map of OLR anomalies for the next 15 days The ensemble mean GFS forecast indicates enhanced convection across the Maritime Continent and western Pacific during the next two weeks. ### Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days #### Constructed Analog (CA) MJO Forecast Figure below shows MJO associated OLR anomalies only (reconstructed from RMM1 and RMM2) and do not include contributions from other modes (*i.e.*, ENSO, monsoons, etc.) #### Spatial map of OLR anomalies for the next 15 days The CA forecast shows enhanced convection over parts of the western Pacific and Brazil while suppressed convection dominates the region from the central Indian Ocean to the western Maritime Continent. ### Time-longitude section of (7.5°S-7.5°N) OLR anomalies for the last 180 days and for the next 15 days #### **MJO Composites – Global Tropics** 850-hPa Wind Anomalies (Nov-Mar) #### Precipitation Anomalies (Nov-Mar) ### U.S. MJO Composites – Temperature - Left hand side plots show temperature anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Blue (orange) shades show negative (positive) anomalies respectively. - Right hand side plots show a measure of significance for the left hand side anomalies. Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml #### **U.S. MJO Composites – Precipitation** - Left hand side plots show precipitation anomalies by MJO phase for MJO events that have occurred over the three month period in the historical record. Brown (green) shades show negative (positive) anomalies respectively. - Right hand side plots show a measure of significance for the left hand side anomalies. Dark blue and purple shades indicate areas in which the anomalies are significant at the 95% or better confidence level. Zhou et al. (2011): A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States, *Climate Dynamics*, 1-13, doi: 10.1007/s00382-011-1001-9 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml